Artículo

Frugone, M.J.; Lowther, A.; Noll, D.; Ramos, B.; Pistorius, P.; Dantas, G.P.M.; Petry, M.V.; Bonadonna, F.; Steinfurth, A.; Polanowski, A.; Raya Rey, A.; Lois, N.A.; Pütz, K.; Trathan, P.; Wienecke, B.; Poulin, E.; Vianna, J.A. "Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean" (2018) Scientific Reports. 8(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Since at least the middle-Miocene, the Antarctic Polar Front (APF) and the Subtropical Front (STF) appear to have been the main drivers of diversification of marine biota in the Southern Ocean. However, highly migratory marine birds and mammals challenge this paradigm and the importance of oceanographic barriers. Eudyptes penguins range from the Antarctic Peninsula to subantarctic islands and some of the southernmost subtropical islands. Because of recent diversification, the number of species remains uncertain. Here we analyze two mtDNA (HVRI, COI) and two nuclear (ODC, AK1) markers from 13 locations of five putative Eudyptes species: rockhopper (E. filholi, E. chrysocome, and E. moseleyi), macaroni (E. chrysolophus) and royal penguins (E. schlegeli). Our results show a strong phylogeographic structure among rockhopper penguins from South America, subantarctic and subtropical islands supporting the recognition of three separated species of rockhopper penguins. Although genetic divergence was neither observed among macaroni penguins from the Antarctic Peninsula and sub-Antarctic islands nor between macaroni and royal penguins, population genetic analyses revealed population genetic structure in both cases. We suggest that the APF and STF can act as barriers for these species. While the geographic distance between colonies might play a role, their impact/incidence on gene flow may vary between species and colonies. © 2018, The Author(s).

Registro:

Documento: Artículo
Título:Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean
Autor:Frugone, M.J.; Lowther, A.; Noll, D.; Ramos, B.; Pistorius, P.; Dantas, G.P.M.; Petry, M.V.; Bonadonna, F.; Steinfurth, A.; Polanowski, A.; Raya Rey, A.; Lois, N.A.; Pütz, K.; Trathan, P.; Wienecke, B.; Poulin, E.; Vianna, J.A.
Filiación:Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ecosistemas y Medio Ambiente, Vicuña Mackenna 4860, Santiago, RM 7820436, Chile
Instituto de Ecología y Biodiversidad, Universidad de Chile, Departamento de Ciencias Ecológicas, Santiago, Chile
Norwegian Polar Institute, Tromsø, N-9297, Norway
DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Department of Zoology, Nelson Mandela University, Port Elizabeth, 6031, South Africa
Pontificia Universidade Católica de Minas Gerais, PPG in Vertebrate Zoology, Belo Horizonte, Brazil
Universidade do Vale do Rio dos Sinos, Laboratório de Ornitologia e Animais Marinhos, Av. Unisinos 950, São Leopoldo, RS, Brazil
CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, Montpellier cedex 5, Montpellier, 34293, France
FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, 7700, South Africa
RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, David Attenborough Building, Pembroke Street, Cambridge, Cambridgeshire CB2 3QZ, United Kingdom
Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
Centro Austral de Investigaciones Científicas – Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Yrigoyen 879, Ushuaia, Argentina
Laboratorio de Ecología y Comportamiento Animal, Instituto de Ecologia, Genética y Evolución de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas (IEGEBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
Antarctic Research Trust, Zürich, Am Oste-Hamme-Kanal 10, Bremervörde, 27432, Germany
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-35975-3
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Frugone

Referencias:

  • Belkin, I.M., Gordon, A.L., Southern Ocean fronts from the Greenwich meridian to Tasmania (1996) Journal of Geophysical Research-Oceans, 101, pp. 3675-3696
  • Force, M.P., Santora, J.A., Reiss, C.S., Loeb, V.J., Seabird species assemblages reflect hydrographic and biogeographic zones within Drake Passage (2015) Polar Biology, 38, pp. 381-392
  • Griffiths, H.J., Barnes, D.K.A., Linse, K., Towards a generalized biogeography of the Southern Ocean benthos (2009) J. Biogeogr., 36, pp. 162-177
  • Deacon, G.E.R., Physical and biological zonation in the Southern Ocean (1982) Deep Sea Research Part A. Oceanographic Research Papers, 29, pp. 1-15
  • Poulin, E., González-Wevar, C., Díaz, A., Gérard, K., Hüne, M., Divergence between Antarctic and South American marine invertebrates: What molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current (2014) Global and Planetary Change, 123, pp. 392-399
  • González-Wevar, C.A., Following the Antarctic Circumpolar Current: patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean (2017) J. Biogeogr., 44, pp. 861-874
  • Gersonde, R., Crosta, X., Abelmann, A., Armand, L., Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum - A circum-Antarctic view based on siliceous microfossil records (2005) Quaternary Science Reviews, 24, pp. 869-896
  • Hune, M., Low level of genetic divergence between Harpagifer fish species (Perciformes: Notothenioidei) suggests a Quaternary colonization of Patagonia from the Antarctic Peninsula (2015) Polar Biology, 38, pp. 607-617
  • Provan, J., Bennett, K.D., Phylogeographic insights into cryptic glacial refugia (2008) Trends in Ecology & Evolution, 23, pp. 564-571
  • Hodgson, D.A., Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands (2014) Quaternary Science Reviews, 100, pp. 137-158
  • Fraser, C.I., Nikula, R., Ruzzante, D.E., Waters, J.M., Poleward bound: biological impacts of Southern Hemisphere glaciation (2012) Trends in Ecology & Evolution, 27, pp. 462-471
  • Kooyman, G.L., Evolutionary and ecological aspects of some Antarctic and sub-Antarctic penguin distributions (2002) Oecologia, 130, pp. 485-495
  • Gavryushkina, A., Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins (2017) Systematic Biology, 66, pp. 57-73
  • Jouventin, P., Cuthbert, R.J., Ottvall, R., Genetic isolation and divergence in sexual traits: evidence for the northern rockhopper penguin Eudyptes moseleyi being a sibling species (2006) Molecular Ecology, 15, pp. 3413-3423
  • Crossin, G.T., Tratham, P.N., Crawford, R.J.M., (2013) Penguins: Natural History and Conservation, , eds P García & D. Boersma, University of Washington Press
  • Cuthbert, R., (2013) Penguins: Natural History and Conservation, , eds P. García & D. Boersma, University of Washington Press
  • Pütz, K., Rey, A.R., Otley, H., (2013) Penguins: Natural History and Conservation, , (eds P. García & D. Boersma) (University of Washington Press
  • Martínez, I., Handbook of the birds of the world (1992) Ostrich to Ducks, 1, pp. 140-160. , eds J. del Hoyo, A. Elliott, & J. Sargatal, Lynxs editions
  • Banks, J., Van Buren, A., Cherel, Y., Whitfield, J.B., Genetic evidence for three species of rockhopper penguins, Eudyptes chrysocome (2006) Polar Biology, 30, pp. 61-67
  • (2017) Eudyptes Chrysocome (Amended Version of 2016 Assessment), , The IUCN Red List of Threatened Species 2017
  • Ksepka, D.T., Bertelli, S., Giannini, N.P., The phylogeny of the living and fossil Sphenisciformes (penguins) (2006) Cladistics, 22, pp. 412-441
  • Bertelli, S., Giannini, N.P., A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences (2005) Cladistics, 21, pp. 209-239
  • Thiebot, J.-B., Bost, C.-A., Dehnhard, N., Demongin, L., Eens, M., Lepoint, G., Cherel, Y., Poisbleau, M., Mates but not sexes differ in migratory niche in a monogamous penguin species (2015) Biology Letters, 11 (9), p. 20150429
  • Williams, T.D., Rodwell, S., Annual Variation in Return Rate, Mate and Nest-Site Fidelity in Breeding Gentoo and Macaroni Penguins (1992) The Condor, 94, pp. 636-645
  • Thiebot, J.B., Authier, M., Trathan, P.N., Bost, C.A., Gentlemen first? ‘Broken stick’ modelling reveals sex-related homing decision date in migrating seabirds (2014) Journal of Zoology, 292, pp. 25-30
  • Thiebot, J.B., Cherel, Y., Trathan, P.N., Bost, C.A., Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time (2012) Ecology, 93, pp. 122-130
  • Thiebot, J.B., Cherel, Y., Trathan, P.N., Bost, C.A., Inter-population segregation in the wintering areas of macaroni penguins (2011) Marine Ecology Progress Series, 421, pp. 279-290
  • Bost, C.A., Thiebot, J.B., Pinaud, D., Cherel, Y., Trathan, P.N., Where do penguins go during the inter-breeding period? Using geolocation to track the winter dispersion of the macaroni penguin (2009) Biology Letters, 5, pp. 473-476
  • Bost, C.A., The importance of oceanographic fronts to marine birds and mammals of the southern oceans (2009) Journal of Marine Systems, 78, pp. 363-376
  • Pütz, K., Rey, A.R., Schiavini, A., Clausen, A.P., Luthi, B.H., Winter migration of rockhopper penguins (Eudyptes c. chrysocome) breeding in the Southwest Atlantic: is utilisation of different foraging areas reflected in opposing population trends? (2006) Polar Biology, 29, pp. 735-744
  • Pütz, K., Ingham, R.J., Smith, J.G., Luthi, B.H., Winter dispersal of rockhopper penguins Eudyptes chrysocome from the Falkland Islands and its implications for conservation (2002) Marine Ecology Progress Series, 240, pp. 273-284
  • Freer, J.J., Limited genetic differentiation among chinstrap penguin (Pygoscelis antarctica) colonies in the Scotia Arc and Western Antarctic Peninsula (2015) Polar Biology, 38, pp. 1493-1502
  • Clucas, G.V., Dispersal in the sub-Antarctic: king penguins show remarkably little population genetic differentiation across their range (2016) Bmc Evolutionary Biology, 16. , https://doi.org/10.1186/s12862-016-0784-z
  • Vianna, J.A., Marked phylogeographic structure of Gentoo penguin reveals an ongoing diversification process along the Southern Ocean (2017) Molecular Phylogenetics and Evolution, 107, pp. 486-498
  • de Dinechin, M., Ottvall, R., Quillfeldt, P., Jouventin, P., Speciation chronology of rockhopper penguins inferred from molecular, geological and palaeoceanographic data (2009) J. Biogeogr., 36, pp. 693-702
  • Whitehead, T.O., Kato, A., Ropert-Coudert, Y., Ryan, P.G., Habitat use and diving behaviour of macaroni Eudyptes chrysolophus and eastern rockhopper E-chrysocome filholi penguins during the critical pre-moult period (2016) Marine Biology, 163. , https://doi.org/10.1007/s00227-015-2794-6
  • Wilson, R., A method for restraining penguins (1997) Marine Ornithology, 25, pp. 72-73
  • Aljanabi, S.M., Martinez, I., Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques (1997) Nucleic Acids Res, 25, pp. 4692-4693. , COI: 1:CAS:528:DyaK1cXhsFWrsA%3D%3D
  • Dantas, G.P., Godinho, R., Morgante, J.S., Ferrand, N., Development of new nuclear markers and characterization of single nucleotide polymorphisms in kelp gull (Larus dominicanus) (2009) Molecular Ecology Resources, 9, pp. 1159-1161
  • Korbie, D.J., Mattick, J.S., Touchdown PCR for increased specificity and sensitivity in PCR amplification (2008) Nature Protocols, 3, p. 1452
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools (1997) Nucleic Acids Research, 25, pp. 4876-4882
  • Librado, P., Rozas, J., DnaSPv5: a software for comprehensive analysis of DNA polymorphism data (2009) Bioinformatics, 25, pp. 1451-1452
  • Garrick, R.C., Sunnucks, P., Dyer, R.J., Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation (2010) BMC Evolutionary Biology, 10
  • Excoffier, L., Lischer, H.E.L., Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows (2010) Molecular Ecology Resources, 10, pp. 564-567
  • Puillandre, N., Lambert, A., Brouillet, S., Achaz, G., (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation., 21, pp. 1864-1877
  • Pons, J., Sequence-based species delimitation for the DNA taxonomy of undescribed insects (2006) Syst Biol, 55, pp. 595-609
  • Hebert, P.D., Cywinska, A., Ball, S.L., deWaard, J.R., Biological identifications through DNA barcodes (2003) Proceedings. Biological sciences, 270, pp. 313-321
  • Bouckaert, R., BEAST 2: A Software Platform for Bayesian Evolutionary Analysis (2014) PLOS Computational Biology, 10
  • Boessenkool, S., Star, B., Waters, J.M., Seddon, P.J., Multilocus assignment analyses reveal multiple units and rare migration events in the recently expanded yellow-eyed penguin (Megadyptes antipodes) (2009) Molecular Ecology, 18, pp. 2390-2400
  • Bouckaert, R.R., Drummond, A.J., bModelTest: Bayesian phylogenetic site model averaging and model comparison (2017) BMC Evolutionary Biology, 17
  • Hospitaleche, C.A., Tambussi, C., Donato, M., Cozzuol, M., A new Miocene penguin from Patagonia and its phylogenetic relationships (2007) Acta Palaeontologica Polonica, 52, pp. 299-314
  • Ksepka, D.T., Clarke, J.A., The Basal Penguin (Aves: Sphenisciformes) Perudyptes devriesi and a Phylogenetic Evaluation of the Penguin Fossil Record (2010) Bulletin of the American Museum of Natural History, 337, pp. 1-77
  • Chávez Hoffmeister, M., Carrillo Briceño, J.D., Nielsen, S.N., The Evolution of Seabirds in the Humboldt Current: New Clues from the Pliocene of Central Chile (2014) PLOS ONE, 9
  • (2009) Tracer Version 1.5, , http://beast.bio.ed.ac.uk
  • Rambaut, A., (2009) Figtree, Ver. 1.3.1, , http://tree.bio.ed.ac.uk/software/figtree/
  • Ronquist, F., Huelsenbeck, J.P., MRBAYES 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19, pp. 1572-1574. , COI: 1:CAS:528:DC%2BD3sXntlKms7k%3D
  • Huelsenbeck, J.P., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755. , COI: 1:STN:280:DC%2BD3MvotV2isw%3D%3D
  • Darriba, D., Taboada, G.L., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing (2012) Nature Methods, 9, p. 772. , COI: 1:CAS:528:DC%2BC38XhtFWmsbfP
  • Guindon, S., Gascuel, O., A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood (2003) Systematic Biology, 52, pp. 696-704
  • Corander, J., Tang, J., Bayesian analysis of population structure based on linked molecular information (2007) Mathematical Biosciences, 205, pp. 19-31
  • Benjamini, Y., Krieger, A.M., Yekutieli, D., Adaptive linear step-up procedures that control the false discovery rate (2006) Biometrika, 93, pp. 491-507
  • Salzburger, W., Ewing, G., Von Haeseler, A., The performance of phylogenetic algorithms in estimating haplotype genealogies with migration (2011) Molecular Ecology, 20 (9), pp. 1952-1963
  • Ewing, G., http://www.cibiv.at/~greg/haploviewer, ed. Center for Integrative Bioinformatics Vienna, Vienna; Millar, C.D., Dodd, A., Anderson, J., Gibb, G.C., Ritchie, P.A., Baroni, C., Woodhams, M.D., Lambert, D.M., Mutation and Evolutionary Rates in Adélie Penguins from the Antarctic (2008) PLoS Genetics, 4 (10)
  • Moon, K.L., Chown, S.L., Fraser, C.I., Reconsidering connectivity in the sub-Antarctic (2017) Biological Reviews, 92 (4), pp. 2164-2181
  • Gonzalez-Wevar, C.A., Out of Antarctica: quaternary colonization of sub-Antarctic Marion Island by the limpet genus Nacella (Patellogastropoda: Nacellidae) (2016) Polar Biology, 39, pp. 77-89
  • Haye, P.A., Phylogeographic Structure in Benthic Marine Invertebrates of the Southeast Pacific Coast of Chile with Differing Dispersal Potential (2014) PLOS ONE, 9
  • Baker, A.J., Pereira, S.L., Haddrath, O.P., Edge, K.A., Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling (2006) Proceedings of the Royal Society B-Biological Sciences, 273, pp. 11-17
  • Brandon, M.A., Murphy, E.J., Trathan, P.N., Bone, D.G., Physical oceanographic conditions to the northwest of the sub-Antarctic Island of South Georgia (2000) Journal of Geophysical Research-Oceans, 105, pp. 23983-23996
  • de Broyer, C., Koubbi, P., (2014) Biogeographic Atlas of Thesouthern Ocean, pp. 2-9. , eds C. De Broyer et al, Ch. 1.1, Scientific Committee On AntarcticResearch
  • Post, A., (2014) Biogeographic Atlas of Thesouthern Ocean, pp. 46-64. , (eds C. De Broyer et al.) Ch. 4, Scientific Committee on AntarcticResearch
  • Ramos, B., Landscape genomics: natural selection drives the evolution of mitogenome in penguins (2018) BMC Genomics, 19
  • Gleason, L.U., Burton, R.S., Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis (2016) Molecular Ecology, 25, pp. 3557-3573
  • de Dinechin, M., The biogeography of Gentoo Penguins (Pygoscelis papua) (2012) Canadian Journal of Zoology-Revue Canadienne De Zoologie, 90, pp. 352-360
  • Lescroel, A., Bajzak, C., Bost, C.A., Breeding ecology of the gentoo penguin Pygoscelis papua at Kerguelen Archipelago (2009) Polar Biology, 32, pp. 1495-1505
  • Wingfield, J.C., Hahn, T.P., Levin, R., Honey, P., Environmental predictability and control of gonadal cycles in birds (1992) Journal of Experimental Zoology, 261, pp. 214-231
  • Roeder, A.D., Gene flow on the ice: genetic differentiation among Adelie penguin colonies around Antarctica (2001) Molecular Ecology, 10, pp. 1645-1656
  • Overeem, R.L., Peucker, A.J., Austin, C.M., Dann, P., Burridge, C.P., Contrasting genetic structuring between colonies of the World’s smallest penguin, Eudyptula minor (Aves: Spheniscidae) (2008) Conservation Genetics, 9, pp. 893-905
  • Cristofari, R., Full circumpolar migration ensures evolutionary unity in the Emperor penguin (2016) Nature Communications, 7. , https://doi.org/10.1038/ncomms11842
  • Cristofari, R., Climate-driven range shifts of the king penguin in a fragmented ecosystem (2018) Nature Climate Change, 8, pp. 245-251
  • Younger, J., Emmerson, L., Southwell, C., Lelliott, P., Miller, K., Proliferation of East Antarctic Adelie penguins in response to historical deglaciation (2015) Bmc Evolutionary Biology, 15. , https://doi.org/10.1186/s12862-015-0502-2
  • Korczak-Abshire, M., Chwedorzewska, K.J., Wasowicz, P., Bednarek, P.T., Genetic structure of declining chinstrap penguin (Pygoscelis antarcticus) populations from South Shetland Islands (Antarctica) (2012) Polar Biology, 35, pp. 1681-1689
  • Nims, B.D., Vargas, F.H., Merkel, J., Parker, P.G., Low genetic diversity and lack of population structure in the endangered Galapagos penguin (Spheniscus mendiculus) (2008) Conservation Genetics, 9, pp. 1413-1420
  • Kisel, Y., Timothy, G., Barraclough. Speciation Has a Spatial Scale That Depends on Levels of Gene Flow (2010) The American Naturalist, 175, pp. 316-334
  • Poulin, É., Féral, J.-P., WHY ARE THERE SO MANY SPECIES OF BROODING ANTARCTIC ECHINOIDS? (1996) Evolution, 50 (2), pp. 820-830
  • Matano, R.P., Palma, E.D., Piola, A.R., The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation (2010) Ocean Sci., 6, pp. 983-995
  • Levy, H., Population structure and phylogeography of the Gentoo Penguin (Pygoscelis papua) across the Scotia Arc (2016) Ecology and Evolution, 6, pp. 1834-1853
  • Younger, J.L., van Den Hoff, J., Wienecke, B., Hindell, M., Miller, K.J., Contrasting responses to a climate regime change by sympatric, ice-dependent predators (2016) Bmc Evolutionary Biology, 16. , https://doi.org/10.1186/s12862-016-0630-3
  • Younger, J.L., Too much of a good thing: sea ice extent may have forced emperor penguins into refugia during the last glacial maximum (2015) Global Change Biology, 21, pp. 2215-2226
  • Trucchi, E., Gratton, P., Whittington, J.D., Cristofari, R., Le Maho, Y., Stenseth, N.C., Le Bohec, C., King penguin demography since the last glaciation inferred from genome-wide data (2014) Proceedings of the Royal Society B: Biological Sciences, 281 (1787), p. 20140528
  • Oliveira, L.R., Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens) (2017) PLOS ONE, 12

Citas:

---------- APA ----------
Frugone, M.J., Lowther, A., Noll, D., Ramos, B., Pistorius, P., Dantas, G.P.M., Petry, M.V.,..., Vianna, J.A. (2018) . Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-35975-3
---------- CHICAGO ----------
Frugone, M.J., Lowther, A., Noll, D., Ramos, B., Pistorius, P., Dantas, G.P.M., et al. "Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-35975-3
---------- MLA ----------
Frugone, M.J., Lowther, A., Noll, D., Ramos, B., Pistorius, P., Dantas, G.P.M., et al. "Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-35975-3
---------- VANCOUVER ----------
Frugone, M.J., Lowther, A., Noll, D., Ramos, B., Pistorius, P., Dantas, G.P.M., et al. Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-35975-3