Artículo

Espiritu, E.B.; Crunk, A.E.; Bais, A.; Hochbaum, D.; Cervino, A.S.; Phua, Y.L.; Butterworth, M.B.; Goto, T.; Ho, J.; Hukriede, N.A.; Cirio, M.C. "The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development" (2018) Scientific Reports. 8(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field. © 2018, The Author(s).

Registro:

Documento: Artículo
Título:The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development
Autor:Espiritu, E.B.; Crunk, A.E.; Bais, A.; Hochbaum, D.; Cervino, A.S.; Phua, Y.L.; Butterworth, M.B.; Goto, T.; Ho, J.; Hukriede, N.A.; Cirio, M.C.
Filiación:Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
Universidad de Buenos Aires, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
Division of Nephrology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, United States
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-34038-x
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Espiritu

Referencias:

  • Cebrian, C., Asai, N., D’Agati, V., Costantini, F., The Number of Fetal Nephron Progenitor Cells Limits Ureteric Branching and Adult Nephron Endowment (2014) Cell Rep, 7, pp. 127-137
  • Weber, S., SIX2 and BMP4 mutations associate with anomalous kidney development (2008) Journal of the American Society of Nephrology: JASN, 19, pp. 891-903
  • Schuchardt, A., DAgati, V., Pachnis, V., Costantini, F., Renal agenesis and hypodysplasia in ret-k(−) mutant mice result from defects in ureteric bud development (1996) Development, 122, pp. 1919-1929. , COI: 1:CAS:528:DyaK28XjvVeqtbw%3D, PID: 8674430
  • Quinlan, J., A common variant of the PAX2 gene is associated with reduced newborn kidney size (2007) Journal of the American Society of Nephrology, 18, pp. 1915-1921
  • Nagalakshmi, V.K., Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney (2011) Kidney Int, 79, pp. 317-330
  • Ho, J., The pro-apoptotic protein Bim is a microRNA target in kidney progenitors (2011) Journal of the American Society of Nephrology: JASN, 22, pp. 1053-1063
  • Barnes, J.D., Crosby, J.L., Jones, C.M., Wright, C.V., Hogan, B.L., Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis (1994) Dev Biol, 161, pp. 168-178
  • Carroll, T.J., Vize, P.D., Synergism between Pax-8 and lim-1 in embryonic kidney development (1999) Dev Biol, 214, pp. 46-59. , COI: 1:CAS:528:DyaK1MXlvFagtLs%3D
  • Tsang, T.E., Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo (2000) Dev Biol, 223, pp. 77-90. , COI: 1:CAS:528:DC%2BD3cXktFeht7Y%3D
  • Swanhart, L.M., Characterization of an lhx1a transgenic reporter in zebrafish (2010) Int J Dev Biol, 54, pp. 731-736
  • Cirio, M.C., Lhx1 is required for specification of the renal progenitor cell field (2011) PLoS One, 6
  • Dawid, I.B., Breen, J.J., Toyama, R., LIM domains: Multiple roles as adapters and functional modifiers in protein interactions (1998) Trends Genet, 14, pp. 156-162
  • Hukriede, N.A., Tsang, T.E., Habas, R., Khoo, P.-L., Steiner, K., Weeks, D.L., Tam, P.P.L., Dawid, I.B., Conserved Requirement of Lim1 Function for Cell Movements during Gastrulation (2003) Developmental Cell, 4 (1), pp. 83-94. , COI: 1:CAS:528:DC%2BD3sXntVyrug%3D%3D
  • Shawlot, W., Behringer, R.R., Requirement for Lim1 in head-organizer function (1995) Nature, 374, pp. 425-430
  • Taira, M., Jamrich, M., Good, P.J., Dawid, I.B., The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos (1992) Genes Dev, 6, pp. 356-366. , COI: 1:CAS:528:DyaK3sXhvVCqt7c%3D
  • Bouchard, M., Souabni, A., Mandler, M., Neubuser, A., Busslinger, M., Nephric lineage specification by Pax2 and Pax8 (2002) Genes Dev, 16, pp. 2958-2970. , COI: 1:CAS:528:DC%2BD38XovVejsb0%3D
  • DeLay, B.D., Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9 (2018) Genetics, 208, pp. 673-686
  • Diep, C.Q., Identification of adult nephron progenitors capable of kidney regeneration in zebrafish (2011) Nature, 470, pp. 95-100
  • Agulnick, A.D., Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins (1996) Nature, 384, pp. 270-272
  • Chen, L., Ssdp proteins interact with the LIM-domain-binding protein Ldb1 to regulate development (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 14320-14325
  • Enkhmandakh, B., Makeyev, A.V., Bayarsaihan, D., The role of the proline-rich domain of Ssdp1 in the modular architecture of the vertebrate head organizer (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 11631-11636
  • Matthews, J.M., Visvader, J.E., LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins (2003) EMBO reports, 4, pp. 1132-1137
  • Hiratani, I., Mochizuki, T., Tochimoto, N., Taira, M., Functional domains of the LIM homeodomain protein Xlim-1 involved in negative regulation, transactivation, and axis formation in Xenopus embryos (2001) Dev Biol, 229, pp. 456-467
  • Taira, M., Otani, H., Saint-Jeannet, J.P., Dawid, I.B., Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus (1994) Nature, 372, pp. 677-679
  • Thaler, J.P., Lee, S.K., Jurata, L.W., Gill, G.N., Pfaff, S.L., LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions (2002) Cell, 110, pp. 237-249. , COI: 1:CAS:528:DC%2BD38XlvV2htrg%3D
  • Costello, I., Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development (2015) Genes Dev, 29, pp. 2108-2122
  • Yasuoka, Y., Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification (2014) Nat Commun, 5
  • Byun, Y.S., Fryl deficiency is associated with defective kidney development and function in mice (2018) Experimental biology and medicine, 243, pp. 408-417
  • Cong, J., The furry gene of Drosophila is important for maintaining the integrity of cellular extensions during morphogenesis (2001) Development, 128, pp. 2793-2802. , COI: 1:CAS:528:DC%2BD3MXlslKqsLo%3D, PID: 11526084
  • Nagai, T., Ikeda, M., Chiba, S., Kanno, S., Mizuno, K., Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase (2013) Journal of cell science, 126, pp. 4369-4380
  • Nagai, T., Mizuno, K., Multifaceted roles of Furry proteins in invertebrates and vertebrates (2014) Journal of biochemistry, 155, pp. 137-146
  • Chiba, S., Ikeda, M., Katsunuma, K., Ohashi, K., Mizuno, K., MST2- and Furry-mediated activation of NDR1 kinase is critical for precise alignment of mitotic chromosomes (2009) Current biology: CB, 19, pp. 675-681
  • Emoto, K., Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons (2004) Cell, 119, pp. 245-256
  • Ikeda, M., Chiba, S., Ohashi, K., Mizuno, K., Furry protein promotes aurora A-mediated Polo-like kinase 1 activation (2012) The Journal of biological chemistry, 287, pp. 27670-27681
  • Goto, T., Fukui, A., Shibuya, H., Keller, R., Asashima, M., Xenopus furry contributes to release of microRNA gene silencing (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 19344-19349
  • Hayette, S., AF4p12, a human homologue to the furry gene of Drosophila, as a novel MLL fusion partner (2005) Cancer Res, 65, pp. 6521-6525
  • Yatim, A., NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function (2012) Mol Cell, 48, pp. 445-458
  • Li, C.J., MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord (2017) Nat Commun, 8
  • Martello, G., MicroRNA control of Nodal signalling (2007) Nature, 449, pp. 183-188
  • Romaker, D., Kumar, V., Cerqueira, D.M., Cox, R.M., Wessely, O., MicroRNAs are critical regulators of tuberous sclerosis complex and mTORC1 activity in the size control of the Xenopus kidney (2014) Proceedings of the National Academy of Sciences of the United States of America, 111, pp. 6335-6340
  • Chu, J.Y., Dicer function is required in the metanephric mesenchyme for early kidney development (2014) American journal of physiology. Renal physiology, 306, pp. F764-F772
  • Marrone, A.K., MicroRNA-17 similar to 92 Is Required for Nephrogenesis and Renal Function (2014) Journal of the American Society of Nephrology, 25, pp. 1440-1452
  • Agrawal, R., Tran, U., Wessely, O., The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1 (2009) Development, 136, pp. 3927-3936
  • Wessely, O., Agrawal, R., Tran, U., MicroRNAs in kidney development: lessons from the frog (2010) RNA Biol, 7, pp. 296-299. , COI: 1:CAS:528:DC%2BC3cXhsVKlurbK
  • Kodjabachian, L., A study of Xlim1 function in the Spemann-Mangold organizer (2001) Int J Dev Biol, 45, pp. 209-218. , COI: 1:CAS:528:DC%2BD3MXivFCmu7s%3D, PID: 11291848
  • Kitamoto, J., Fukui, A., Asashima, M., Temporal regulation of global gene expression and cellular morphology in Xenopus kidney cells in response to clinorotation (2005) Adv Space Res, 35, pp. 1654-1661
  • Perkins, F.M., Handler, J.S., Transport properties of toad kidney epithelia in culture (1981) Am J Physiol, 241, pp. C154-C159. , COI: 1:CAS:528:DyaL3MXlt12rs78%3D
  • Huttlin, E.L., Architecture of the human interactome defines protein communities and disease networks (2017) Nature, 545, pp. 505-509
  • Carroll, T.J., Vize, P.D., Wilms’ tumor suppressor gene is involved in the development of disparate kidney forms: Evidence from expression in the Xenopus pronephros (1996) Dev Dyn, 206, pp. 131-138
  • Mauch, T.J., Yang, G., Wright, M., Smith, D., Schoenwolf, G.C., Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm (2000) Dev Biol, 220, pp. 62-75. , COI: 1:CAS:528:DC%2BD3cXhsleqt7o%3D
  • Mitchell, T., Jones, E.A., Weeks, D.L., Sheets, M.D., Chordin affects pronephros development in Xenopus embryos by anteriorizing presomitic mesoderm (2007) Dev Dyn, 236, pp. 251-261
  • Seufert, D.W., Brennan, H.C., DeGuire, J., Jones, E.A., Vize, P.D., Developmental basis of pronephric defects in Xenopus body plan phenotypes (1999) Dev Biol, 215, pp. 233-242. , COI: 1:CAS:528:DyaK1MXmvFyrtbk%3D
  • Hopwood, N.D., Pluck, A., Gurdon, J.B., MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos (1989) Embo J, 8, pp. 3409-3417. , COI: 1:CAS:528:DyaK3cXhtFehu7w%3D
  • Cartry, J., Retinoic acid signalling is required for specification of pronephric cell fate (2006) Dev Biol, 299, pp. 35-51
  • Chen, Y., Pollet, N., Niehrs, C., Pieler, T., Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos (2001) Mech Dev, 101, pp. 91-103. , COI: 1:CAS:528:DC%2BD3MXhsFShtLw%3D
  • Breving, K., Esquela-Kerscher, A., The complexities of microRNA regulation: mirandering around the rules (2010) The international journal of biochemistry & cell biology, 42, pp. 1316-1329
  • Tang, G.Q., Maxwell, E.S., Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation (2008) Genome research, 18, pp. 104-112
  • Mathelier, A., Carbone, A., Large scale chromosomal mapping of human microRNA structural clusters (2013) Nucleic acids research, 41, pp. 4392-4408
  • Griffiths-Jones, S., Saini, H.K., van Dongen, S., Enright, A.J., miRBase: tools for microRNA genomics (2008) Nucleic acids research, 36, pp. D154-D158
  • Denby, L., MicroRNA-214 antagonism protects against renal fibrosis (2014) Journal of the American Society of Nephrology: JASN, 25, pp. 65-80
  • Gomez, I.G., Nakagawa, N., Duffield, J.S., MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis (2016) American journal of physiology. Renal physiology, 310, pp. F931-F944
  • Nakagawa, N., Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis (2015) Kidney Int, 87, pp. 1125-1140
  • Thiagarajan, R.D., Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling (2011) BMC Genomics, 12
  • Sudou, N., Yamamoto, S., Ogino, H., Taira, M., Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer (2012) Development, 139, pp. 1651-1661
  • Gentsch, G.E., Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus (2018) Dev Cell, 44, pp. 597-610 e510
  • Desvignes, T., Contreras, A., Postlethwait, J.H., Evolution of the miR199-214 cluster and vertebrate skeletal development (2014) RNA Biol, 11, pp. 281-294
  • Juan, A.H., Kumar, R.M., Marx, J.G., Young, R.A., Sartorelli, V., Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells (2009) Mol Cell, 36, pp. 61-74
  • Flynt, A.S., Li, N., Thatcher, E.J., Solnica-Krezel, L., Patton, J.G., Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate (2007) Nat Genet, 39, pp. 259-263
  • Chen, M., MiR-23b controls TGF-beta1 induced airway smooth muscle cell proliferation via direct targeting of Smad3 (2017) Pulm Pharmacol Ther, 42, pp. 33-42
  • Rogler, C.E., Matarlo, J.S., Kosmyna, B., Fulop, D., Rogler, L.E., Knockdown of miR-23, miR-27, and miR-24 Alters Fetal Liver Development and Blocks Fibrosis in Mice (2017) Gene Expr, 17, pp. 99-114
  • Klockenbusch, C., Kast, J., Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin beta1 (2010) Journal of biomedicine & biotechnology, 2010, p. 927585
  • Nieuwkoop, P.D., Faber, J., (1994) Normal Table of Xenopus Laevis, , Garland Publishing
  • Dagle, J.M., Weeks, D.L., Oligonucleotide-based strategies to reduce gene expression (2001) Differentiation, 69, pp. 75-82. , COI: 1:CAS:528:DC%2BD38XovVOltw%3D%3D
  • Gawantka, V., Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning (1998) Mech Dev, 77, pp. 95-141. , COI: 1:CAS:528:DyaK1cXmvFWmsrY%3D

Citas:

---------- APA ----------
Espiritu, E.B., Crunk, A.E., Bais, A., Hochbaum, D., Cervino, A.S., Phua, Y.L., Butterworth, M.B.,..., Cirio, M.C. (2018) . The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-34038-x
---------- CHICAGO ----------
Espiritu, E.B., Crunk, A.E., Bais, A., Hochbaum, D., Cervino, A.S., Phua, Y.L., et al. "The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-34038-x
---------- MLA ----------
Espiritu, E.B., Crunk, A.E., Bais, A., Hochbaum, D., Cervino, A.S., Phua, Y.L., et al. "The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-34038-x
---------- VANCOUVER ----------
Espiritu, E.B., Crunk, A.E., Bais, A., Hochbaum, D., Cervino, A.S., Phua, Y.L., et al. The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-34038-x