Artículo

Dunayevich, P.; Baltanás, R.; Clemente, J.A.; Couto, A.; Sapochnik, D.; Vasen, G.; Colman-Lerner, A. "Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway" (2018) Scientific Reports. 8(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cells make decisions based on a combination of external and internal signals. In yeast, the high osmolarity response (HOG) is a mitogen-activated protein kinase (MAPK) pathway that responds to a variety of stimuli, and it is central to the general stress response. Here we studied the effect of heat-stress (HS) on HOG. Using live-cell reporters and genetics, we show that HS promotes Hog1 phosphorylation and Hog1-dependent gene expression, exclusively via the Sln1 phosphorelay branch, and that the strength of the activation is larger in yeast adapted to high external osmolarity. HS stimulation of HOG is indirect. First, we show that HS causes glycerol loss, necessary for HOG activation. Preventing glycerol efflux by deleting the glyceroporin FPS1 or its regulators RGC1 and ASK10/RGC2, or by increasing external glycerol, greatly reduced HOG activation. Second, we found that HOG stimulation by HS depended on the operation of a second MAPK pathway, the cell-wall integrity (CWI), a well-known mediator of HS, since inactivating Pkc1 or deleting the MAPK SLT2 greatly reduced HOG activation. Our data suggest that the main role of the CWI in this process is to stimulate glycerol loss. We found that in yeast expressing the constitutively open channel mutant (Fps1-Δ11), HOG activity was independent of Slt2. In summary, we suggest that HS causes a reduction in turgor due to the loss of glycerol and the accompanying water, and that this is what actually stimulates HOG. Thus, taken together, our findings highlight a central role for Fps1, and the metabolism of glycerol, in the communication between the yeast MAPK pathways, essential for survival and reproduction in changing environments. © 2018, The Author(s).

Registro:

Documento: Artículo
Título:Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway
Autor:Dunayevich, P.; Baltanás, R.; Clemente, J.A.; Couto, A.; Sapochnik, D.; Vasen, G.; Colman-Lerner, A.
Filiación:Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
CIHIDECAR-Departamento de Química Orgánica, FCEN, UBA, Buenos Aires, Argentina
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-33203-6
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Dunayevich

Referencias:

  • Chen, R.E., Thorner, J., Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae (2007) Biochim Biophys Acta, 1773, pp. 1311-1340
  • Hohmann, S., An integrated view on a eukaryotic osmoregulation system (2015) Current genetics, 61, pp. 373-382
  • Levin, D.E., Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway (2011) Genetics, 189, pp. 1145-1175
  • Atay, O., Skotheim, J.M., Spatial and temporal signal processing and decision making by MAPK pathways (2017) The Journal of cell biology, 216, pp. 317-330
  • Madhani, H.D., Fink, G.R., The control of filamentous differentiation and virulence in fungi (1998) Trends Cell Biol., 8, pp. 348-353
  • Neiman, A.M., Sporulation in the Budding Yeast Saccharomyces cerevisiae (2011) Genetics, 189, pp. 737-765
  • Mollapour, M., Piper, P.W., Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae (2006) FEMS Yeast Res, 6, pp. 1274-1280
  • Thorsen, M., The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast (2006) Mol Biol Cell, 17, pp. 4400-4410
  • Panadero, J., Pallotti, C., Rodríguez-Vargas, S., Randez-Gil, F., Prieto, J.A., A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae (2006) The Journal of biological chemistry, 281, pp. 4638-4645
  • Winkler, A., Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress (2002) Eukaryot Cell, 1, pp. 163-173. , COI: 1:CAS:528:DC%2BD38XjtVOis7Y%3D, PID: 12455951
  • de Nadal, E., Ammerer, G., Posas, F., Controlling gene expression in response to stress (2011) Nat Rev Genet, 12, pp. 833-845
  • Posas, F., Takekawa, M., Saito, H., Signal transduction by MAP kinase cascades in budding yeast (1998) Curr. Opin. Microbiol., 1, pp. 175-182
  • Yamamoto, K., Tatebayashi, K., Tanaka, K., Saito, H., Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor (2010) Mol Cell, 40, pp. 87-98
  • Beese, S.E., Negishi, T., Levin, D.E., Identification of positive regulators of the yeast Fps1 glycerol channel (2009) PLoS Genet, 5
  • Lee, J., MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators (2013) Genes & development, 27, pp. 2590-2601
  • Brewster, J.L., Gustin, M.C., Hog1: 20 years of discovery and impact (2014) Science Signaling, 7 (343), p. re7
  • Westfall, P.J., Patterson, J.C., Chen, R.E., Thorner, J., Stress resistance and signal fidelity independent of nuclear MAPK function (2008) Proc Natl Acad Sci USA, 105, pp. 12212-12217
  • Ferrigno, P., Posas, F., Koepp, D., Saito, H., Silver, P.A., Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1 (1998) EMBO J., 17, pp. 5606-5614
  • O’Rourke, S.M., Herskowitz, I., Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis (2004) Mol Biol Cell, 15, pp. 532-542
  • Hohmann, S., Osmotic stress signaling and osmoadaptation in yeasts (2002) Microbiol Mol Biol Rev, 66, pp. 300-372
  • Luyten, K., Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress (1995) Embo J, 14, pp. 1360-1371
  • Harrison, J.C., Zyla, T.R., Bardes, E.S., Lew, D.J., Stress-specific activation mechanisms for the “cell integrity” MAPK pathway (2004) J Biol Chem, 279, pp. 2616-2622
  • Kuravi, V.K., Kurischko, C., Puri, M., Luca, F.C., Cbk1 kinase and Bck2 control MAP kinase activation and inactivation during heat shock (2011) Mol Biol Cell, 22, pp. 4892-4907
  • Rodriguez-Pena, J.M., Garcia, R., Nombela, C., Arroyo, J., The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes (2010) Yeast, 27, pp. 495-502
  • Morano, K.A., Grant, C.M., Moye-Rowley, W.S., The response to heat shock and oxidative stress in Saccharomyces cerevisiae (2012) Genetics, 190, pp. 1157-1195
  • Kamada, Y., Jung, U.S., Piotrowski, J., Levin, D.E., The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response (1995) Genes Dev., 9, pp. 1559-1571
  • Baltanas, R., Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway (2013) Sci Signal, 6, p. ra26
  • Philips, J., Herskowitz, I., Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae (1997) J.Cell Biol., 138, pp. 961-974
  • Hottiger, T., Schmutz, P., Wiemken, A., Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae (1987) J Bacteriol, 169, pp. 5518-5522
  • Mensonides, F.I., Brul, S., Klis, F.M., Hellingwerf, K.J., Teixeira de Mattos, M.J., Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation (2005) Appl Environ Microbiol, 71, pp. 4531-4538
  • English, J.G., Shellhammer, J.P., Malahe, M., McCarter, P.C., Elston, T.C., Dohlman, H.G., MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast (2015) Science Signaling, 8 (359), p. ra5
  • Bishop, A.C., A chemical switch for inhibitor-sensitive alleles of any protein kinase (2000) Nature, 407, pp. 395-401
  • Pelet, S., Transient activation of the HOG MAPK pathway regulates bimodal gene expression (2011) Science, 332, pp. 732-735
  • Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S., Stochastic gene expression in a single cell (2002) Science, 297, pp. 1183-1186
  • Colman-Lerner, A., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437, pp. 699-706
  • Huang, K.N., Symington, L.S., Mutation of the gene encoding protein kinase C 1 stimulates mitotic recombination in Saccharomyces cerevisiae (1994) Molecular and cellular biology, 14, pp. 6039-6045
  • Kuranda, K., Leberre, V., Sokol, S., Palamarczyk, G., Francois, J., Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways (2006) Mol Microbiol, 61, pp. 1147-1166
  • Papahadjopoulos, D., Nir, S., Oki, S., Permeability properties of phospholipid membranes: effect of cholesterol and temperature (1972) Biochim Biophys Acta, 266, pp. 561-583
  • Klose, C., Surma, M.A., Gerl, M.J., Meyenhofer, F., Shevchenko, A., Simons, K., Flexibility of a Eukaryotic Lipidome – Insights from Yeast Lipidomics (2012) PLoS ONE, 7 (4)
  • Tamás, M.J., A short regulatory domain restricts glycerol transport through yeast Fps1p (2003) The Journal of biological chemistry, 278, pp. 6337-6345
  • Martín, H., Flández, M., Nombela, C., Molina, M., Protein phosphatases in MAPK signalling: we keep learning from yeast (2005) Molecular microbiology, 58, pp. 6-16
  • Macia, J., Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction (2009) Sci Signal, 2, p. ra13
  • Talemi, S.R., Systems Level Analysis of the Yeast Osmo-Stat (2016) Sci Rep, 6
  • Auesukaree, C., Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation (2017) Journal of bioscience and bioengineering, 124, pp. 133-142
  • Marlar, S., Jensen, H.H., Login, F.H., Nejsum, L.N., Aquaporin-3 in Cancer (2017) International Journal of Molecular Sciences, 18 (10), p. 2106
  • Iena, F., Lebeck, J., Implications of Aquaglyceroporin 7 in Energy Metabolism (2018) International Journal of Molecular Sciences, 19 (1), p. 154
  • Ieso, M.L., Yool, A.J., Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis (2018) Frontiers in Chemistry, 6, p. 135
  • Boury-Jamot, M., Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter? (2006) Biochimica et biophysica acta, 1758, pp. 1034-1042
  • Ma, T., Hara, M., Sougrat, R., Verbavatz, J.-M.M., Verkman, A.S., Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3 (2002) The Journal of biological chemistry, 277, pp. 17147-17153
  • Guthrie, C., Fink, G.R., (1991) Methods in Enzymology, Guide to Yeast Genetics and Molecular Biology, , Academic Press
  • Longtine, M.S., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae (1998) Yeast, 14, pp. 953-961. , COI: 1:CAS:528:DyaK1cXltVemsro%3D, PID: 9717241
  • Patterson, J.C., Klimenko, E.S., Thorner, J., Single-Cell Analysis Reveals That Insulation Maintains Signaling Specificity Between Two Yeast MAPK Pathways with Common Components (2010) Sci. Signal., 3
  • Li, Z., Systematic exploration of essential yeast gene function with temperature-sensitive mutants (2011) Nature Biotechnology, 29, p. 361
  • Gibson, D.G., Chemical synthesis of the mouse mitochondrial genome (2010) Nat Methods, 7, pp. 901-903
  • Gordon, A., Single-cell quantification of molecules and rates using open-source microscope-based cytometry (2007) Nat Methods, 4, pp. 175-181
  • Bush, A., Chernomoretz, A., Yu, R., Gordon, A., Colman-Lerner, A., Using Cell-ID 1.4 with R for microscope-based cytometry (2012) Curr Protoc Mol Biol Chapter 14, Unit14 18, , https://doi.org/10.1002/0471142727.mb1418s100
  • Yu, R.C., Negative feedback that improves information transmission in yeast signalling (2008) Nature, 456, pp. 755-761
  • Tarocco, F., Lecuona, R.E., Couto, A.S., Arcas, J.A., Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology (2005) Appl Microbiol Biotechnol, 68, pp. 481-488
  • Babazadeh, R., The yeast osmostress response is carbon source dependent (2017) Sci Rep, 7

Citas:

---------- APA ----------
Dunayevich, P., Baltanás, R., Clemente, J.A., Couto, A., Sapochnik, D., Vasen, G. & Colman-Lerner, A. (2018) . Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-33203-6
---------- CHICAGO ----------
Dunayevich, P., Baltanás, R., Clemente, J.A., Couto, A., Sapochnik, D., Vasen, G., et al. "Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-33203-6
---------- MLA ----------
Dunayevich, P., Baltanás, R., Clemente, J.A., Couto, A., Sapochnik, D., Vasen, G., et al. "Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-33203-6
---------- VANCOUVER ----------
Dunayevich, P., Baltanás, R., Clemente, J.A., Couto, A., Sapochnik, D., Vasen, G., et al. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-33203-6