Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aedes albopictus (Diptera: Culicidae) is an invasive mosquito, native to Asia, that has expanded its range worldwide. It is considered to be a public health threat as it is a competent vector of viruses of medical importance, including dengue, chikungunya, and Zika. Despite its medical importance there is almost no information on biologically important traits of Ae. albopictus in Argentina. We studied life cycle traits, demographic parameters and analyzed the competence of this mosquito as a virus vector. In addition, we determined the prevalence of Wolbachia strains in Ae. albopictus as a first approach to investigate the potential role of this bacteria in modulating vector competence for arboviruses. We observed low hatch rates of eggs, which led to a negative growth rate. We found that Ae. albopictus individuals were infected with Wolbachia in the F1 but while standard superinfection with wAlbA and wAlbB types was found in 66.7% of the females, 16.7% of the females and 62.5% of the males were single-infected with the wAlbB strain. Finally, despite high levels of infection and dissemination, particularly for chikungunya virus, Ae. albopictus from subtropical Argentina were found to be relatively inefficient vectors for transmission of both chikungunya and dengue viruses. © 2018 The Author(s).

Registro:

Documento: Artículo
Título:Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission
Autor:Chuchuy, A.; Rodriguero, M.S.; Ferrari, W.; Ciota, A.T.; Kramer, L.D.; Micieli, M.V.
Filiación:Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61y 62, La Plata, 1900, Argentina
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Intendente Güiraldes y, Av. Costanera Norte s/n, 4to Piso, Pabellón II, Ciudad Autónoma de Buenos Aires, CI1428 EHA, Argentina
Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, United States
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-23401-7
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Chuchuy

Referencias:

  • Benedict, M.Q., Levine, R.S., Hawley, W.A., Lounibos, P.L., Spread of the Tiger: Global Risk of Invasion by the Mosquito Aedes albopictus (2007) Vector-Borne Zoonotic Dis., 7, pp. 76-85
  • Rai, K.S., Aedes albopictus in the Americas (1991) Annu. Rev. Entomol., 36, pp. 459-484
  • Hawley, W.A., The biology of Aedes albopictus (1988) J. Am. Mosq. Control Assoc., 1, pp. 1-39
  • Reiter, P., Fontenille, D., Paupy, C., Aedes albopictus as an epidemic vector of chikungunya virus: Another emerging problem (2006) Lancet Infect. Dis., 6, pp. 463-464
  • Delatte, H., Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: Biology and control (2008) Parasite., 15, pp. 3-13
  • Vega-Rua, A., High efficiency of temperate aedes albopictus to transmit chikungunya and dengue viruses in the southeast of France (2013) PLoS One., 8, pp. 1-8
  • Vega-Rúa, A., Zouache, K., Girod, R., Failloux, A.-B., Lourenço-De-Oliveira, R., High level of vector competence of aedes aegypti and aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus (2014) J. Virol., 88, pp. 6294-6306
  • Ciota, A.T., Bialosuknia, S.M., Ehrbar, D.J., Kramer, L.D., Vertical transmission of zika virus by aedes aegypti and ae (2017) Albopictus Mosquitoes. Emerg. Infect. Dis., 23, pp. 880-882
  • Azar, S.R., Differential vector competency of aedes albopictus populations from the americas for zika virus (2017) Am. J. Trop. Med. Hyg., 97, pp. 330-339
  • Weger-Lucarelli, J., Vector competence of American mosquitoes for three strains of zikavirus (2016) PLoS Negl. Trop. Dis., 10, pp. 1-16
  • Lambrechts, L., Scott, T.W., Gubler, D.J., Consequences of the expanding global distribution of aedes albopictus for dengue virus transmission (2010) PLoS Negl. Trop. Dis., 4
  • Rezza, G., Aedes albopictus and the reemergence of Dengue (2012) BMC Public Health., 12, p. 72
  • Rezza, G., Infection with chikungunya virus in Italy: An outbreak in a temperate region (2007) Lancet., 370, pp. 1840-1846
  • Tsetsarkin, K.A., Vanlandingham, D.L., McGee, C.E., Higgs, S., A single mutation in chikungunya virus affects vector specificity and epidemic potential (2007) PLoS Pathog, 3, pp. 1895-1906
  • Forattini, O.P.I., De aedes (stegomyia) albopictus (skuse) no brasil (1986) Rev. Saude Publica., 20, pp. 244-245
  • Sprenger, D., Wuithiranyagool, T., The discovery and distribution of Aedes albopictus in Harris County, Texas (1986) J. Am. Mosq. Control Assoc., 2, pp. 217-219
  • Hawley, W.A., Reiter, P., Copeland, R.S., Pumpuni, C.B., Craig, J.G.B., Aedes albopictus in North America: Probable Introduction in Used Tires from Northern Asia (1987) Science (80-)., 236, pp. 1114-1117
  • Moore, C.G., Mitchell, C.J., Aedes albopictus in the United States: Ten-Year Presence and Public Health Implications (1997) Emerg. Infect. Dis., 3, pp. 329-334
  • La Corte Dos Santos, R., Updating of the distribution of Aedes albopictus in Brazil (1997-2002) (2003) Rev. Saude Publica., 37, pp. 671-673
  • Mousson, L., Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations (2005) Genet. Res., 86, pp. 1-11
  • Rossi, G.C., Pascual, N.T., Krsticevic, F.J., First record of Aedes albopictus (Skuse) from Argentina (1999) J. Am. Mosq. Control Assoc., 15, p. 422
  • Schweigmann, N., Vezzani, D., Orellano, P., Kuruc, J., Boffi, R., Aedes albopictus in an area of Misiones, Argentina (2004) Rev. Saude Publica., 38, pp. 136-138
  • Rossi, G.C., Lestani, E.A., D'Oria, J.M., Nuevos registros y distribución de mosquitos de la Argentina (Diptera: Culicidae) (2006) Rev. la Soc. Entomológica Argentina., 65, pp. 51-56
  • Sinkins, S.P., Braig, H.R., O'Neill, S.L., Wolbachia superinfections and the expression of cytoplasmic incompatibility (1995) Proc. R. Soc. B Biol. Sci., 261, pp. 325-330
  • Kambhampati, S., Rai, K.S., Burgun, S.J., Unidirectional cytoplasmic incompatibility in the mosquito, aedes albopictus (1993) Evolution (N. Y)., 47, pp. 673-677
  • Bourtzis, K., Harnessing mosquito-Wolbachia symbiosis for vector and disease control (2014) Acta Trop., 132, pp. 150-163
  • Dobson, S.L., Fox, C.W., Jiggins, F.M., The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems (2002) Proc. Biol. Sci., 269, pp. 437-445
  • Dobson, S.L., Rattanadechakul, W., Marsland, E.J., Fitness advantage and cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes albopictus (2004) Heredity (Edinb)., 93, pp. 135-142
  • Islam, M.S., Dobson, S.L., Wolbachia effects on aedes albopictus (diptera: Culicidae) immature survivorship and development (2006) J. Med. Entomol., 43, pp. 689-695
  • Gavotte, L., Daniell, H., Mercer, D.R., Stoeckle, J.J., Dobson, S.L., Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level (2010) J. Invertebr. Pathol., 105, pp. 341-346
  • Mousson, L., The native wolbachia symbionts limit transmission of dengue virus in aedes albopictus (2012) PLoS Negl. Trop. Dis., p. 6
  • Moreira, L.A., A wolbachia symbiont in aedes aegypti limits infection with dengue, chikungunya, and plasmodium (2009) Cell, 139, pp. 1268-1278
  • Birungi, J., Munstermann, L.E., Genetic structure of Aedes albopictus (Diptera: Culicidae) Populations Based on Mitochondrial ND5 Sequences: Evidence for an Independent Invasion into Brazil and United States (2002) Ann. Entomol. Soc. Am., 95, pp. 125-132
  • Maimusa, H.A., Ahmad, A.H., Kassim, N.F.A., Rahim, J., Age-stage, two-sex life table characteristics of aedes albopictus and aedes aegypti in Penang island, Malaysia (2016) J. Am. Mosq. Control Assoc., 32, pp. 1-11
  • Tsuda, Y., Takagi, M., Suzuki, A., Wada, Y., A comparative study on life table characteristics of two strains of aedes albopictus from Japan and Thailand (1994) Trop. Med., 36, pp. 15-20
  • Iv, W.C.B., Rai, K.S., Turco, B.J., Arroyo, D.C., Laboratory study of competition between United States strains of aedes albopictus and aedes aegypti (diptera: Culicidae) (1989) Entomol. Soc. Am., pp. 260-271
  • Werren, J.H., Baldo, L., Clark, M.E., Wolbachia: Master manipulators of invertebrate biology (2008) Nat. Rev. Microbiol., 6, pp. 741-751
  • Zhou, W., Rousset, F., O'Neill, S., Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences (1998) Proc. R. Soc. B Biol. Sci., 265, pp. 509-515
  • Casiraghi, M., Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree (2005) Microbiology., 151, pp. 4015-4022
  • Baldo, L., Multilocus sequence typing system for the endosymbiont wolbachia pipientis (2006) Appl. Environ. Microbiol., 72, pp. 7098-7110
  • Baldo, L., Werren, J.H., Revisiting wolbachia supergroup typing based on WSP: Spurious lineages and discordance with MLST (2007) Curr. Microbiol., 55, pp. 81-87
  • Zhang, D., A field survey for Wolbchia and phage WO infections of Aedes albopictus in Guangzhou City, China (2014) Parasitol. Res., 113, pp. 399-404
  • Noor Afizah, A., Roziah, A., Nazni, W.A., Lee, H.L., Detection of wolbachia from field collected aedes albopictus skuse in Malaysia (2015) Indian J. Med. Res., 142, pp. 205-210
  • Kittayapong, P., Baimai, V., O'Neill, S.L., Field prevalence of Wolbachia in the mosquito vector Aedes albopictus (2002) Am. J. Trop. Med. Hyg., 66, pp. 108-111
  • Turelli, M., Hoffmann, A.A., Cytoplasmic incompatibility in drosophila simulans: Dynamics and parameter estimates from natural populations (1995) Genetics., 140, pp. 1319-1338
  • Turelli, M., Evolution of incompatibility-inducing microbes and their hosts (1994) Evolution (N. Y)., 48, pp. 1500-1513
  • Tortosa, P., Wolbachia age-sex-specific density in aedes albopictus: A host evolutionary response to cytoplasmic incompatibility (2010) PLoS One., 5
  • Darsie, R.F., (1985) Mosquito Systematics, 17, pp. 153-253
  • Rabinovich, J.E., Nieves, E.L., Vital statistics of triatominae (hemiptera: Reduviidae) under laboratory conditions: III. Rhodnius neglectus (2011) J. Med. Entomol., 48, pp. 775-787
  • Rodriguero, M.S., Confalonieri, V.A., Guedes, J.V.C., Lanteri, A.A., Wolbachia infection in the tribe Naupactini (Coleoptera, Curculionidae): Association between thelytokous parthenogenesis and infection status (2010) Insect Mol. Biol., 19, pp. 631-640
  • Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98
  • Thompson, J.D., Higgins, D.G., Gibson, T.J., Clustal W: Improving the sensitivity of progressive multiple sequence aligment through sequence weighting, position specific gap penalties and weight matrix choice (1994) Nucleic Acids Res. Acids Res, 22, pp. 4673-4680
  • Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and high-performance computing (2015) Nat. Methods., 9, p. 772
  • Ronquist, F., MrBayes 3. 2: Efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol., 61, pp. 539-542
  • De Lamballerie, X., Chikungunya virus adapts to tiger mosquito via evolutionary convergence: A sign of things to come (2008) Virol. J., p. 5
  • Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics., 17, pp. 754-755
  • Bordenstein, S.R., Parasitism and mutualism in wolbachia: What the phylogenomic trees can and cannot say (2009) Mol. Biol. Evol., 26, pp. 231-241
  • Ebel, G.D., Carricaburu, J., Young, D., Bernard, K.A., Kramer, L.D., Genetic and phenotypic variation of west nile virus in New York, 2000-2003 (2004) Am. J. Trop. Med. Hyg., 71, pp. 493-500

Citas:

---------- APA ----------
Chuchuy, A., Rodriguero, M.S., Ferrari, W., Ciota, A.T., Kramer, L.D. & Micieli, M.V. (2018) . Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-23401-7
---------- CHICAGO ----------
Chuchuy, A., Rodriguero, M.S., Ferrari, W., Ciota, A.T., Kramer, L.D., Micieli, M.V. "Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-23401-7
---------- MLA ----------
Chuchuy, A., Rodriguero, M.S., Ferrari, W., Ciota, A.T., Kramer, L.D., Micieli, M.V. "Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-23401-7
---------- VANCOUVER ----------
Chuchuy, A., Rodriguero, M.S., Ferrari, W., Ciota, A.T., Kramer, L.D., Micieli, M.V. Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-23401-7