Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The subtle mechanisms by which protein-DNA interactions remain functional across a wide range of temperatures are largely unknown. In this work, we manually curated available information relating fully sequenced archaeal genomes with organism growth temperatures. We built a motif that represents the core promoter of each species and calculated its information content. We then studied the relation between optimal growth temperature (OGT) and information content (IC) in the promoter region.We found a positive correlation between G + C content and OGT in tRNA regions and not in overall genome. Furthermore, we found that there is a positive correlation between information content and optimal growth temperatures in Archaea. This can't be explained by an increased C+G composition nor by other obvious mechanisms. These findings suggest that increased information content could produce a positive fitness in organisms living at high temperatures. We suggest that molecular information theory may need to be adapted for hyperthermophiles. © 2018 The Author(s).

Registro:

Documento: Artículo
Título:Core promoter information content correlates with optimal growth temperature
Autor:Aptekmann, A.A.; Nadra, A.D.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Bioquímica Estructural, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, Buenos Aires, 2160, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologiá, Biologiá Molecular y Celular, Laboratorio de Bioquímica Estructural, Buenos Aires, Argentina
Palabras clave:transfer RNA; archaeal genome; archaeon; DNA base composition; genetics; heat tolerance; physiology; promoter region; Archaea; Base Composition; Genome, Archaeal; Promoter Regions, Genetic; RNA, Transfer; Thermotolerance
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-19495-8
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
CAS:transfer RNA, 9014-25-9; RNA, Transfer
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Aptekmann

Referencias:

  • Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D., Cockell, C.S., The limits for life under multiple extremes (2013) Trends in Microbiology, 21, pp. 204-212
  • Mann, S., Chen, Y.-P.P., Bacterial genomic g + c composition-eliciting environmental adaptation (2010) Genomics, 95, pp. 7-15
  • Wu, H., Zhang, Z., Hu, S., Yu, J., On the molecular mechanism of gc content variation among eubacterial genomes (2012) Biol Direct, 7, p. 2
  • Schneider, T.D., Stephens, R.M., Sequence logos: A new way to display consensus sequences (1990) Nucleic Acids Research, 18, pp. 6097-6100
  • Schneider, T.D., Consensus sequence zen (2002) Applied Bioinformatics, 1, p. 111
  • Blum, P., (2001) Archaea: Ancient Microbes Extreme Environments, and the Origin of Life, 50. , Gulf Professional Publishing
  • Kornberg, R.D., The molecular basis of eukaryotic transcription (2007) Proceedings of the National Academy of Sciences, 104, pp. 12955-12961
  • Laslett, D., Aragorn, C.B., A program for the detection of transfer RNA and transfer-messenger RNA genes (2004) Nucl Acids Res, 32, pp. 11-16
  • Söhngen, C., Bunk, B., Podstawka, A., Gleim, D., Overmann, J., Bacdive-the bacterial diversity metadatabase (2013) Nucleic Acids Research gkt1058
  • Jaboski, S., Rodowicz, P., Ukaszewicz, M., Methanogenic archaea database containing physiological and biochemical characteristics (2015) International Journal of Systematic and Evolutionary Microbiology, 65, pp. 1360-1368
  • Hurst, L.D., Merchant, A.R., High guanine-cytosine content is not an adaptation to high temperature: A comparative analysis amongst prokaryotes (2001) Proceedings of the Royal Society of London B: Biological Sciences, 268, pp. 493-497
  • Musto, H., Genomic gc level, optimal growth temperature, and genome size in prokaryotes (2006) Biochemical and Biophysical Research Communications, 347, pp. 1-3
  • Wang, H.-C., Susko, E., Roger, A.J., On the correlation between genomic g + c content and optimal growth temperature in prokaryotes: Data quality and confounding factors (2006) Biochemical and Biophysical Research Communications, 342, pp. 681-684
  • Sabath, N., Ferrada, E., Barve, A., Wagner, A., Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation (2013) Genome Biology and Evolution, 5, pp. 966-977
  • Schneider, T.D., Stormo, G.D., Gold, L., Ehrenfeucht, A., Information content of binding sites on nucleotide sequences (1986) Journal of Molecular Biology, 188, pp. 415-431
  • Bell, S., Magill, C., Jackson, S., (2001) Basal and regulated transcription in archaea
  • Rohs, R., Origins of specificity in protein-DNA recognition (2010) Annual Review of Biochemistry, 79, pp. 233-269
  • Eliseo, T., Indirect DNA readout on the protein side: Coupling between histidine protonation, global structural cooperativity, dynamics, and DNA binding of the human papillomavirus type 16 e2c domain (2009) Journal of Molecular Biology, 388, pp. 327-344
  • Bareket-Samish, A., Cohen, I., Haran, T.E., Signals for tbp/tata box recognition (2000) Journal of Molecular Biology, 299, pp. 965-977
  • Schneider, T.D., 70% efficiency of bistate molecular machines explained by information theory, high dimensional geometry and evolutionary convergence (2010) Nucleic Acids Research Gkq, 389
  • Schneider, T.D., Evolution of biological information (2000) Nucleic Acids Research, 28, pp. 2794-2799
  • Groussin, M., Gouy, M., Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea (2011) Molecular Biology and Evolution, 28, pp. 2661-2674
  • Bailey, T.L., Elkan, C., Fitting a mixture model by expectation maximization to discover motifs in bipolymers (1994) Proc Int Conf Intell Syst Mol Biol, 32, pp. 28-36

Citas:

---------- APA ----------
Aptekmann, A.A. & Nadra, A.D. (2018) . Core promoter information content correlates with optimal growth temperature. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-19495-8
---------- CHICAGO ----------
Aptekmann, A.A., Nadra, A.D. "Core promoter information content correlates with optimal growth temperature" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-19495-8
---------- MLA ----------
Aptekmann, A.A., Nadra, A.D. "Core promoter information content correlates with optimal growth temperature" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-19495-8
---------- VANCOUVER ----------
Aptekmann, A.A., Nadra, A.D. Core promoter information content correlates with optimal growth temperature. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-19495-8