Artículo

Møller, S.R.; Yi, X.; Velásquez, S.M.; Gille, S.; Hansen, P.L.M.; Poulsen, C.P.; Olsen, C.E.; Rejzek, M.; Parsons, H.; Zhang, Y.; Wandall, H.H.; Clausen, H.; Field, R.A.; Pauly, M.; Estevez, J.M.; Harholt, J.; Ulvskov, P.; Petersen, B.L."Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD" (2017) Scientific Reports. 7
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp 4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1-5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf 4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its' product, Hyp-Araf 4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae. © The Author(s) 2017.

Registro:

Documento: Artículo
Título:Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD
Autor:Møller, S.R.; Yi, X.; Velásquez, S.M.; Gille, S.; Hansen, P.L.M.; Poulsen, C.P.; Olsen, C.E.; Rejzek, M.; Parsons, H.; Zhang, Y.; Wandall, H.H.; Clausen, H.; Field, R.A.; Pauly, M.; Estevez, J.M.; Harholt, J.; Ulvskov, P.; Petersen, B.L.
Filiación:VKR Research Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricia Argentinas 435, Buenos Aires, C1405BWE, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires, C1428EGA, Argentina
Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, Duesseldorf, Germany
Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, Copenhagen V, 1799, Denmark
Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, DK-2200, Denmark
Universität Für Bodenkultur Wien (BOKU), Department for Applied Genetics and Cell Biology (DAGZ), Muthgasse 18, Vienna, 1190, Austria
Bayer Crop Science, Weed Control Research, Industriepark Höchst, Frankfurt am Main, 65926, Germany
Department of Biochemistry, University of Cambridge, United Kingdom
Palabras clave:Arabidopsis protein; arabinose; ARAf protein, Arabidopsis; bacterial DNA; glycoprotein glycosyltransferase; glycosyltransferase; T-DNA; xylan 1,4 beta xylosidase; anatomy and histology; Arabidopsis; cell wall; enzymology; gene knockout; genetics; glycosylation; growth, development and aging; metabolism; molecular evolution; mutation; plant root; Arabidopsis; Arabidopsis Proteins; Arabinose; Cell Wall; DNA, Bacterial; Evolution, Molecular; Gene Knockout Techniques; Glycosylation; Hexosyltransferases; Mutation; Plant Roots; Xylosidases
Año:2017
Volumen:7
DOI: http://dx.doi.org/10.1038/srep45341
Handle:http://hdl.handle.net/20.500.12110/paper_20452322_v7_n_p_Moller
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
CAS:arabinose, 147-81-9; glycosyltransferase, 9033-07-2; xylan 1,4 beta xylosidase, 9025-53-0; Arabidopsis Proteins; Arabinose; ARAf protein, Arabidopsis; DNA, Bacterial; glycoprotein glycosyltransferase; Hexosyltransferases; T-DNA; Xylosidases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n_p_Moller

Referencias:

  • Breton, C., Heissigerova, H., Jeanneau, C., Moravcova, J., Imberty, A., Comparative aspects of glycosyltransferases (2002) Biochem Soc Symp, pp. 23-32
  • Coutinho, P.M., Stam, M., Blanc, E., Henrissat, B., Why are there so many carbohydrate-active enzyme-related genes in plants (2003) Trends in Plant Science, 8, pp. 563-565
  • Ellis, M., Egelund, J., Schultz, C.J., Bacic, A., Arabinogalactan-proteins: Key regulators at the cell surface (2010) Plant Physiol, 153, pp. 403-419
  • Lamport, D.T., Kieliszewski, M.J., Chen, Y., Cannon, M.C., Role of the extensin superfamily in primary cell wall architecture (2011) Plant Physiol, 156, pp. 11-19
  • Lamport, D.T., Miller, D.H., Hydroxyproline arabinosides in the plant kingdom (1971) Plant Physiol, 48, pp. 454-456
  • Tan, L., Leykam, J.F., Kieliszewski, M.J., Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins (2003) Plant Physiology, 132, pp. 1362-1369
  • Xu, J., Tan, L., Lamport, D.T., Showalter, A.M., Kieliszewski, M.J., The O-Hyp glycosylation code in tobacco and Arabidopsis and a proposed role of Hyp-glycans in secretion (2008) Phytochemistry, 69, pp. 1631-1640
  • Chakraborty, S., YeATS-A tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut (2015) F1000 Res, 4, p. 155
  • Bollig, K., Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii-conservation of the inner core in Chlamydomonas and land plants (2007) Carbohydr Res, 342, pp. 2557-2566
  • Miller, D.H., Lamport, D.T., Miller, M., Hydroxyproline heterooligosaccharides in Chlamydomonas (1972) Science, 176, pp. 918-920
  • Akiyama, Y., Mori, M., Kat, K., 13C-NMR Analysis of Hydroxy-proline Arabinosides from Nicotiana tabacum (1980) Agricultural and Biological Chemistry, 44, pp. 2487-2489
  • Campargue, C., Lafitte, C., Esquerre-Tugaye, M.T., Mazau, D., Analysis of hydroxyproline and hydroxyproline-arabinosides of plant origin by high-performance anion-exchange chromatography-pulsed amperometric detection (1998) Anal Biochem, 257, pp. 20-25
  • Lamport, D.T.A., Katona, L., Roerig, S., Galactosylserine in extensin (1973) Biochemical Journal, 133, pp. 125-132
  • Matsubayashi, Y., Post-translational modifications in secreted peptide hormones in plants (2011) Plant Cell Physiol, 52, pp. 5-13
  • Kohorn, B.D., Kohorn, S.L., The cell wall-associated kinases, WAKs, as pectin receptors (2012) Front Plant Sci, 3, p. 88
  • Nakhamchik, A., A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase gene family using bioinformatic and experimental approaches (2004) Plant Cell Physiol, 45, pp. 1875-1881
  • Halim, A., Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications (2015) Molecular & Cellular Proteomics, 14, pp. 191-204
  • Saito, F., Identification of Novel Peptidyl Serine alpha-Galactosyltransferase Gene Family in Plants (2014) The Journal of Biological Chemistry, 289, pp. 20405-20420
  • Showalter, A.M., Keppler, B., Lichtenberg, J., Gu, D., Welch, L.R., A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins (2010) Plant Physiol, 153, pp. 485-513
  • Velasquez, S.M., O-glycosylated cell wall proteins are essential in root hair growth (2011) Science, 332, pp. 1401-1403
  • Velasquez, S.M., Complex regulation of prolyl-4-hydroxylases impacts root hair expansion (2015) Mol Plant, 8, pp. 734-746
  • Ogawa-Ohnishi, M., Matsushita, W., Matsubayashi, Y., Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana (2013) Nat Chem Biol, 9, pp. 726-730
  • Egelund, J., Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue (2007) Plant Mol Biol, 64, pp. 439-451
  • Gille, S., Hansel, U., Ziemann, M., Pauly, M., Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases (2009) Proc Natl Acad Sci USA, 106, pp. 14699-14704
  • Yang, Z., Toward stable genetic engineering of human o-glycosylation in plants (2012) Plant Physiology, 160, pp. 450-463
  • Schoberer, J., Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes (2009) Traffic, 10, pp. 101-115
  • Strasser, R., Molecular cloning and characterization of Arabidopsis thaliana Golgi-mannosidase II, a key enzyme in the formation of complex N-glycans in plants (2006) The Plant Journal, 45, pp. 789-803
  • Boevink, P., Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network (1998) Plant J, 15, pp. 441-447
  • Ma, B., Simala-Grant, J.L., Taylor, D.E., Fucosylation in prokaryotes and eukaryotes (2006) Glycobiology, 16, pp. 158R-184R
  • Hayashida, M., Fujii, T., Hamasu, M., Ishiguro, M., Hata, Y., Similarity between protein-protein and protein-carbohydrate interactions, revealed by two crystal structures of lectins from the roots of pokeweed (2003) J Mol Biol, 334, pp. 551-565
  • Mihara, M., Itoh, T., Izawa, T., SALAD database: A motif-based database of protein annotations for plant comparative genomics (2010) Nucleic Acids Research, 38, pp. D835-D842
  • Hori, K., Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation (2014) Nat Commun, 5, p. 3978
  • Liu, X., Bioinformatic identification and analysis of extensins in the plant kingdom (2016) PLoS One, 11, p. e0150177
  • MacAlister, C.A., Ortiz-Ramirez, C., Becker, J.D., Feijo, J.A., Lippman, Z.B., Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens (2016) Plant J, 85, pp. 193-208
  • Ulvskov, P., Paiva, D.S., Domozych, D., Harholt, J., Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes (2013) PLoS One, 8, p. e76511
  • Christiansen, C., The carbohydrate-binding module family 20-diversity, structure, and function (2009) FEBS J, 276, pp. 5006-5029
  • Alderwick, L.J., The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module (2011) PLoS Pathog, 7, p. e1001299
  • Basu, D., Functional identification of a hydroxyproline-o-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis (2013) J Biol Chem, 288, pp. 10132-10143
  • Gazave, E., Origin and evolution of the Notch signalling pathway: An overview from eukaryotic genomes (2009) BMC Evol Biol, 9, p. 249
  • Acar, M., Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling (2008) Cell, 132, pp. 247-258
  • Sorensen, I., The charophycean green algae provide insights into the early origins of plant cell walls (2011) Plant J, 68, pp. 201-211
  • Domozych, S., Wells, D.B., Shaw, J.P., Basket scales of the green alga, mesostigma viride: Chemistry and ultrastructure (1991) Journal of Cell Science, 100, p. 397
  • Harholt, J., The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall (2012) Plos One, 7, p. e35846
  • Wickett, N.J., Phylotranscriptomic analysis of the origin and early diversification of land plants (2014) Proc Natl Acad Sci USA, 111, pp. E4859-4868
  • Matasci, N., Data access for the 1, 000 Plants (1KP) project (2014) Gigascience, 3, p. 17
  • Xie, Y., SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads (2014) Bioinformatics, 30, pp. 1660-1666
  • Johnson, M.T., Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes (2012) PLoS One, 7, p. e50226
  • Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797
  • Mitchell, A., The InterPro protein families database: The classification resource after 15 years (2015) Nucleic Acids Res, 43, pp. D213-221
  • Kall, L., Krogh, A., Sonnhammer, E.L., A combined transmembrane topology and signal peptide prediction method (2004) J Mol Biol, 338, pp. 1027-1036
  • Brady, S.M., A high-resolution root spatiotemporal map reveals dominant expression patterns (2007) Science, 318, pp. 801-806
  • Ciucanu, I., Kerek, F., A simple and rapid method for the permethylation of carbohydrates (1984) Carbohydrate Research, 131, pp. 209-217. , http://dx.doi.org/10.1016/0008-6215(84)85242-8
  • Ciucanu, I., Per-O-methylation reaction for structural analysis of carbohydrates by mass spectrometry (2006) Anal Chim Acta, 576, pp. 147-155
  • Kivirikko, K.I., Liesmaa, M., A colorimetric method for determination of hydroxyproline in tissue hydrolysates (1959) Scand. J. Clin. Lab. Invest., 11, pp. 128-133
  • Schoberer, J., Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation (2010) Traffic, 11, pp. 1429-1444
  • Knoch, E., A beta-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth (2013) Plant J, 76, pp. 1016-1029
  • Earley, K.W., Gateway-compatible vectors for plant functional genomics and proteomics (2006) Plant J, 45, pp. 616-629
  • Markwardt, M.L., An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching (2011) Plos One, 6, p. e17896
  • Abdulrazzak, N., A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth (2006) Plant Physiol, 140, pp. 30-48
  • Byg, I., Large-scale extraction of rhamnogalacturonan i from industrial potato waste (2012) Food Chemistry, 131, pp. 1207-1216. , http://dx.doi.org/10.1016/j.foodchem.2011.09.106
  • Madson, M., The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins (2003) Plant Cell, 15, pp. 1662-1670
  • Harholt, J., Arabinan Deficient 1 is a Putative Arabinosyltransferase Involved in Biosynthesis of Pectic Arabinan in Arabidopsis (2006) Plant Physiology, 140, pp. 49-58
  • Jensen, J.K., Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis (2008) Plant Cell, 20, pp. 1289-1302
  • Brown, D.M., Zhang, Z., Stephens, E., Dupree, P., Turner, S.R., Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis (2009) Plant J, 57, pp. 732-746
  • Zhong, R., Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis (2005) Plant Cell, 17, pp. 3390-3408
  • Winter, D., An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets (2007) PLoS One, 2, p. e718
  • Lind, T., Tufaro, F., McCormick, C., Lindahl, U., Lidholt, K., The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate (1998) The Journal of Biological Chemistry, 273, pp. 26265-26268

Citas:

---------- APA ----------
Møller, S.R., Yi, X., Velásquez, S.M., Gille, S., Hansen, P.L.M., Poulsen, C.P., Olsen, C.E.,..., Petersen, B.L. (2017) . Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports, 7.
http://dx.doi.org/10.1038/srep45341
---------- CHICAGO ----------
Møller, S.R., Yi, X., Velásquez, S.M., Gille, S., Hansen, P.L.M., Poulsen, C.P., et al. "Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD" . Scientific Reports 7 (2017).
http://dx.doi.org/10.1038/srep45341
---------- MLA ----------
Møller, S.R., Yi, X., Velásquez, S.M., Gille, S., Hansen, P.L.M., Poulsen, C.P., et al. "Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD" . Scientific Reports, vol. 7, 2017.
http://dx.doi.org/10.1038/srep45341
---------- VANCOUVER ----------
Møller, S.R., Yi, X., Velásquez, S.M., Gille, S., Hansen, P.L.M., Poulsen, C.P., et al. Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Sci. Rep. 2017;7.
http://dx.doi.org/10.1038/srep45341