Artículo

Risnik, D.; Podaza, E.; Almejún, M.B.; Colado, A.; Elías, E.E.; Bezares, R.F.; Fernández-Grecco, H.; Cranco, S.; Sánchez-Ávalos, J.C.; Borge, M.; Gamberale, R.; Giordano, M. "Revisiting the role of interleukin-8 in chronic lymphocytic leukemia" (2017) Scientific Reports. 7(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The proliferation and survival of malignant B cells in chronic lymphocytic leukemia (CLL) depend on signals from the microenvironment in lymphoid tissues. Among a plethora of soluble factors, IL-8 has been considered one of the most relevant to support CLL B cell progression in an autocrine fashion, even though the expression of IL-8 receptors, CXCR1 and CXCR2, on leukemic B cells has not been reported. Here we show that circulating CLL B cells neither express CXCR1 or CXCR2 nor they respond to exogenous IL-8 when cultured in vitro alone or in the presence of monocytes/nurse-like cells. By intracellular staining and ELISA we show that highly purified CLL B cells do not produce IL-8 spontaneously or upon activation through the B cell receptor. By contrast, we found that a minor proportion (<0.5%) of contaminating monocytes in enriched suspensions of leukemic cells might be the actual source of IL-8 due to their strong capacity to release this cytokine. Altogether our results indicate that CLL B cells are not able to secrete or respond to IL-8 and highlight the importance of methodological details in in vitro experiments. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Revisiting the role of interleukin-8 in chronic lymphocytic leukemia
Autor:Risnik, D.; Podaza, E.; Almejún, M.B.; Colado, A.; Elías, E.E.; Bezares, R.F.; Fernández-Grecco, H.; Cranco, S.; Sánchez-Ávalos, J.C.; Borge, M.; Gamberale, R.; Giordano, M.
Filiación:Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Hospital General de Agudos Dr. Teodoro Álvarez, Buenos Aires, Argentina
Sanatorio Municipal Dr. Julio Méndez, Buenos Aires, Argentina
Instituto Alexander Fleming, Buenos Aires, Argentina
Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
Año:2017
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1038/s41598-017-15953-x
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n1_p_Risnik

Referencias:

  • Chiorazzi, N., Rai, K.R., Ferrarini, M., Chronic lymphocytic leukemia (2005) The New England Journal of Medicine, 352, pp. 804-815. , https://doi.org/10.1056/NEJMra041720
  • Kipps, T.J., Chronic lymphocytic leukaemia (2017) Nature Reviews. Disease Primers, 3, p. 17008. , https://doi.org/10.1038/nrdp.2017.8
  • Burger, J.A., Gribben, J.G., The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: Insight into disease biology and new targeted therapies (2014) Seminars in Cancer Biology, 24, pp. 71-81. , https://doi.org/10.1016/j.semcancer.2013.08.011
  • Di Celle, P.F., Cytokine gene expression in B-cell chronic lymphocytic leukemia: Evidence of constitutive interleukin-8 (IL-8) mRNA expression and secretion of biologically active IL-8 protein (1994) Blood, 84, pp. 220-228
  • Wierda, W.G., Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia (2003) British Journal of Haematology, 120, pp. 452-456
  • Podaza, E., Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs) (2017) Cancer Immunology, Immunotherapy: CII, 66, pp. 77-89. , https://doi.org/10.1007/s00262-016-1921-7
  • Francia Di-Celle, P., Interleukin-8 induces the accumulation of B-cell chronic lymphocytic leukemia cells by prolonging survival in an autocrine fashion (1996) Blood, 87, pp. 4382-4389
  • Buechele, C., Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL) (2012) Leukemia, 26, pp. 991-1000. , https://doi.org/10.1038/leu.2011.313
  • Binsky, I., IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 13408-13413. , https://doi.org/10.1073/pnas.0701553104
  • Ghobrial, I.M., Expression of the chemokine receptors CXCR4 and CCR7 and disease progression in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (2004) Mayo Clinic Proceedings, 79, pp. 318-325. , https://doi.org/10.4065/79.3.318
  • Levidou, G., Immunohistochemical analysis of IL-6, IL-8/CXCR2 axis, tyr p-STAT-3, and SOCS-3 in lymph nodes from patients with chronic lymphocytic leukemia: Correlation between microvascular characteristics and prognostic significance (2014) BioMed Research International, 2014, p. 251479. , https://doi.org/10.1155/2014/251479
  • Baggiolini, M., Dewald, B., Moser, B., Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines (1994) Advances in Immunology, 55, pp. 97-179
  • Beliakova-Bethell, N., The effect of cell subset isolation method on gene expression in leukocytes (2014) Cytometry. Part A: The Journal of the International Society for Analytical Cytology, 85, pp. 94-104. , https://doi.org/10.1002/cyto.a.22352
  • Calzetti, F., Tamassia, N., Arruda-Silva, F., Gasperini, S., Cassatella, M.A., The importance of being "pure" neutrophils (2017) The Journal of Allergy and Clinical Immunology, 139, pp. 352-355. , https://doi.org/10.1016/j.jaci.2016.06.025, e356
  • Wang, P., Interleukin-10 inhibits interleukin-8 production in human neutrophils (1994) Blood, 83, pp. 2678-2683
  • Berhanu, D., Mortari, F., De Rosa, S.C., Roederer, M., Optimized lymphocyte isolation methods for analysis of chemokine receptor expression (2003) Journal of Immunological Methods, 279, pp. 199-207
  • Herndon, T.M., Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood (2017) Leukemia, 31, pp. 1340-1347. , https://doi.org/10.1038/leu.2017.11
  • Herishanu, Y., The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia (2011) Blood, 117, pp. 563-574. , https://doi.org/10.1182/blood-2010-05-284984
  • Mittal, A.K., Chronic lymphocytic leukemia cells in a lymph node microenvironment depict molecular signature associated with an aggressive disease (2014) Molecular Medicine, 20, pp. 290-301. , https://doi.org/10.2119/molmed.2012.00303
  • Bennett, L.D., Fox, J.M., Signoret, N., Mechanisms regulating chemokine receptor activity (2011) Immunology, 134, pp. 246-256. , https://doi.org/10.1111/j.1365-2567.2011.03485.x
  • Kitada, S., Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: Correlations with in vitro and in vivo chemoresponses (1998) Blood, 91, pp. 3379-3389
  • Trimarco, V., Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): Implications for neoplastic cell survival (2015) Oncotarget, 6, pp. 42130-42149. , https://doi.org/10.18632/oncotarget.6239
  • Jagannathan, M., TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients (2009) Journal of Immunology, 183, pp. 7461-7470. , https://doi.org/10.4049/jimmunol.0901517
  • Kasahara, K., Strieter, R.M., Chensue, S.W., Standiford, T.J., Kunkel, S.L., Mononuclear cell adherence induces neutrophil chemotactic factor/interleukin-8 gene expression (1991) Journal of Leukocyte Biology, 50, pp. 287-295
  • Chen, M., Bittencourt Mde, C., Feugier, P., Faure, G.C., Bene, M.C., Active toll-like receptor-7 triggering of chronic lymphocytic leukemia B-cells by imiquimod (2012) Leukemia & Lymphoma, 53, pp. 739-742. , https://doi.org/10.3109/10428194.2011.624230
  • Yoon, J.Y., Association of interleukin-6 and interleukin-8 with poor prognosis in elderly patients with chronic lymphocytic leukemia (2012) Leukemia & Lymphoma, 53, pp. 1735-1742. , https://doi.org/10.3109/10428194.2012.666662
  • De Paula-Careta, F., The aurora A and B kinases are up-regulated in bone marrow-derived chronic lymphocytic leukemia cells and represent potential therapeutic targets (2012) Haematologica, 97, pp. 1246-1254. , https://doi.org/10.3324/haematol.2011.054668
  • Molica, S., Clinico-biological implications of increased serum levels of interleukin-8 in B-cell chronic lymphocytic leukemia (1999) Haematologica, 84, pp. 208-211
  • Galletti, G., Caligaris-Cappio, F., Bertilaccio, M.T., B cells and macrophages pursue a common path toward the development and progression of chronic lymphocytic leukemia (2016) Leukemia, 30, pp. 2293-2301. , https://doi.org/10.1038/leu.2016.261
  • Jia, L., Extracellular HMGB1 promotes differentiation of nurse-like cells in chronic lymphocytic leukemia (2014) Blood, 123, pp. 1709-1719. , https://doi.org/10.1182/blood-2013-10-529610
  • Croci, D.O., Nurse-like cells control the activity of chronic lymphocytic leukemia B cells via galectin-1 (2013) Leukemia, 27, pp. 1413-1416. , https://doi.org/10.1038/leu.2012.315
  • Friedman, D.R., Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: A multiinstitutional study (2016) American Journal of Hematology, 91, pp. 687-691. , https://doi.org/10.1002/ajh.24376
  • Herishanu, Y., Absolute monocyte count trichotomizes chronic lymphocytic leukemia into high risk patients with immune dysregulation, disease progression and poor survival (2013) Leukemia Research, 37, pp. 1222-1228. , https://doi.org/10.1016/j.leukres.2013.07.017
  • Li, A., Dubey, S., Varney, M.L., Dave, B.J., Singh, R.K., IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis (2003) Journal of Immunology, 170, pp. 3369-3376

Citas:

---------- APA ----------
Risnik, D., Podaza, E., Almejún, M.B., Colado, A., Elías, E.E., Bezares, R.F., Fernández-Grecco, H.,..., Giordano, M. (2017) . Revisiting the role of interleukin-8 in chronic lymphocytic leukemia. Scientific Reports, 7(1).
http://dx.doi.org/10.1038/s41598-017-15953-x
---------- CHICAGO ----------
Risnik, D., Podaza, E., Almejún, M.B., Colado, A., Elías, E.E., Bezares, R.F., et al. "Revisiting the role of interleukin-8 in chronic lymphocytic leukemia" . Scientific Reports 7, no. 1 (2017).
http://dx.doi.org/10.1038/s41598-017-15953-x
---------- MLA ----------
Risnik, D., Podaza, E., Almejún, M.B., Colado, A., Elías, E.E., Bezares, R.F., et al. "Revisiting the role of interleukin-8 in chronic lymphocytic leukemia" . Scientific Reports, vol. 7, no. 1, 2017.
http://dx.doi.org/10.1038/s41598-017-15953-x
---------- VANCOUVER ----------
Risnik, D., Podaza, E., Almejún, M.B., Colado, A., Elías, E.E., Bezares, R.F., et al. Revisiting the role of interleukin-8 in chronic lymphocytic leukemia. Sci. Rep. 2017;7(1).
http://dx.doi.org/10.1038/s41598-017-15953-x