Artículo

Inda, C.; Bonfiglio, J.J.; Dos Santos Claro, P.A.; Senin, S.A.; Armando, N.G.; Deussing, J.M.; Silberstein, S. "CAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells" (2017) Scientific Reports. 7(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells). By characterising CRHR1 signalling mechanisms involved in the neuritogenic effect, we demonstrate that neurite outgrowth in HT22-CRHR1 cells takes place by a sAC-dependent, ERK1/2-independent signalling cascade. Both tmACs and sAC are involved in corticotropin-releasing hormone (CRH)-mediated CREB phosphorylation and c-fos induction, but only sAC-generated cAMP pools are critical for the neuritogenic effect of CRH, further highlighting the engagement of two sources of cAMP downstream of the activation of a GPCR, and reinforcing the notion that restricted cAMP microdomains may regulate independent cellular processes. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:CAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells
Autor:Inda, C.; Bonfiglio, J.J.; Dos Santos Claro, P.A.; Senin, S.A.; Armando, N.G.; Deussing, J.M.; Silberstein, S.
Filiación:Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics Molecular Neurogenetics, Munich, Germany
Max Planck Institute for Biology of Ageing, Cologne, Germany
Palabras clave:adenylate cyclase; biological marker; corticotropin releasing factor; corticotropin releasing factor receptor; corticotropin releasing factor receptor 1; cyclic AMP; cyclic AMP responsive element binding protein binding protein; animal; blood; cell culture; cell cycle checkpoint; cell differentiation; cell survival; cytology; human; metabolism; mouse; pyramidal nerve cell; Adenylyl Cyclases; Animals; Biomarkers; Cell Cycle Checkpoints; Cell Differentiation; Cell Survival; Cells, Cultured; Corticotropin-Releasing Hormone; CREB-Binding Protein; Cyclic AMP; Humans; Mice; Pyramidal Cells; Receptors, Corticotropin-Releasing Hormone
Año:2017
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1038/s41598-017-02021-7
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
CAS:adenylate cyclase, 9012-42-4; corticotropin releasing factor, 9015-71-8, 178359-01-8, 79804-71-0, 86297-72-5, 86784-80-7; cyclic AMP, 60-92-4; cyclic AMP responsive element binding protein binding protein, 190209-80-4; Adenylyl Cyclases; Biomarkers; Corticotropin-Releasing Hormone; CREB-Binding Protein; CRF receptor type 1; Cyclic AMP; Receptors, Corticotropin-Releasing Hormone
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n1_p_Inda

Referencias:

  • Stork, P.J., Schmitt, J.M., Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation (2002) Trends Cell Biol., 12, pp. 258-266
  • Roisen, F.J., Murphy, R.A., Pichichero, M.E., Braden, W.G., Cyclic adenosine monophosphate stimulation of axonal elongation (1972) Science, 175, pp. 73-74
  • Cai, D., Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate (2001) J. Neurosci., 21, pp. 4731-4739
  • Shewan, D., Dwivedy, A., Anderson, R., Holt, C.E., Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway (2002) Nat. Neurosci., 5, pp. 955-962
  • Cooper, D.M., Regulation and organization of adenylyl cyclases and cAMP (2003) Biochem. J., 375, pp. 517-529
  • Holsboer, F., Ising, M., Stress hormone regulation: Biological role and translation into therapy (2010) Annu. Rev. Psychol., 61, pp. 81-109. , C1-11
  • Refojo, D., Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1 (2011) Science, 333, pp. 1903-1907
  • Bonfiglio, J.J., The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: Molecular and cellular mechanisms involved (2011) Neuroendocrinology, 94, pp. 12-20
  • Inda, C., Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling (2016) J. Cell Biol., 214, pp. 181-195
  • Irannejad, R., Von Zastrow, M., GPCR signaling along the endocytic pathway (2014) Curr. Opin. Cell Biol., 27, pp. 109-116
  • Vaudry, D., Stork, P.J., Lazarovici, P., Eiden, L.E., Signaling pathways for PC12 cell differentiation: Making the right connections (2002) Science, 296, pp. 1648-1649
  • Emery, A.C., Eiden, M.V., Mustafa, T., Eiden, L.E., Rapgef2 connects GPCR-mediated cAMP signals to ERK activation in neuronal and endocrine cells (2013) Sci. Signal., 6, p. ra51
  • Bonfiglio, J.J., B-Raf and CRHR1 internalization mediate biphasic ERK1/2 activation by CRH in hippocampal HT22 Cells (2013) Mol. Endocrinol., 27, pp. 491-510
  • Bender, J., Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif (2015) PLoS One, 10, p. e0136768
  • Henckens, M.J., Deussing, J.M., Chen, A., Region-specific roles of the corticotropin-releasing factor-urocortin system in stress (2016) Nat. Rev. Neurosci., 17, pp. 636-651
  • Klarenbeek, J., Goedhart, J., Van Batenburg, A., Groenewald, D., Jalink, K., Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: Characterization of dedicated sensors for FLIM, for ratiometry and with high affinity (2015) PLoS One, 10, p. e0122513
  • Madisen, L., A robust and high-throughput Cre reporting and characterization system for the whole mouse brain (2010) Nat. Neurosci., 13, pp. 133-140
  • Hauger, R.L., Risbrough, V., Brauns, O., Dautzenberg, F.M., Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: New molecular targets (2006) CNS Neurol. Disord. Drug Targets, 5, pp. 453-479
  • Grigoriadis, D.E., The corticotropin-releasing factor receptor: A novel target for the treatment of depression and anxiety-related disorders (2005) Expert Opin. Ther. Targets, 9, pp. 651-684
  • Holsboer, F., Ising, M., Central CRH system in depression and anxiety-evidence from clinical studies with CRH1 receptor antagonists (2008) Eur. J. Pharmacol., 583, pp. 350-357
  • Wu, K.Y., Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones (2006) Nat. Neurosci., 9, pp. 1257-1264
  • Tresguerres, M., Levin, L.R., Buck, J., Intracellular cAMP signaling by soluble adenylyl cyclase (2011) Kidney Int., 79, pp. 1277-1288
  • Corredor, R.G., Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth (2012) J. Neurosci., 32, pp. 7734-7744
  • Chen, J., Martinez, J., Milner, T.A., Buck, J., Levin, L.R., Neuronal expression of soluble adenylyl cyclase in the mammalian brain (2013) Brain Res., 1518, pp. 1-8
  • Bitterman, J.L., Ramos-Espiritu, L., Diaz, A., Levin, L.R., Buck, J., Pharmacological distinction between soluble and transmembrane adenylyl cyclases (2013) J. Pharmacol. Exp. Ther., 347, pp. 589-598
  • Jaiswal, B.S., Conti, M., Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 10676-10681
  • Litvin, T.N., Kamenetsky, M., Zarifyan, A., Buck, J., Levin, L.R., Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate (2003) J. Biol. Chem., 278, pp. 15922-15926
  • Chen, Y., Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor (2000) Science, 289, pp. 625-628
  • Tojima, T., Hines, J.H., Henley, J.R., Kamiguchi, H., Second messengers and membrane trafficking direct and organize growth cone steering (2011) Nat. Rev. Neurosci., 12, pp. 191-203
  • Gabso, M., Neher, E., Spira, M.E., Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons (1997) Neuron, 18, pp. 473-481
  • Augustine, G.J., Santamaria, F., Tanaka, K., Local calcium signaling in neurons (2003) Neuron, 40, pp. 331-346
  • Wheeler, D.G., Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression (2012) Cell, 149, pp. 1112-1124
  • Cooper, D.M., Tabbasum, V.G., Adenylate cyclase-centred microdomains (2014) Biochem. J., 462, pp. 199-213
  • Benito, E., Barco, A., The neuronal activity-driven transcriptome (2015) Mol. Neurobiol., 51, pp. 1071-1088
  • Slominski, A., Corticotropin releasing hormone and the skin (2006) Front. Biosci., 11, pp. 2230-2248
  • Chen, J.Y., Lin, J.R., Cimprich, K.A., Meyer, T., A two-dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision (2012) Mol. Cell., 45, pp. 196-209
  • Shi, S.H., Jan, L.Y., Jan, Y.N., Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity (2003) Cell, 112, pp. 63-75
  • Schwamborn, J.C., Puschel, A.W., The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity (2004) Nat. Neurosci., 7, pp. 923-929
  • Jaworski, J., Spangler, S., Seeburg, D.P., Hoogenraad, C.C., Sheng, M., Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway (2005) J. Neurosci., 25, pp. 11300-11312
  • Bang, O.S., Overexpression of Akt inhibits NGF-induced growth arrest and neuronal differentiation of PC12 cells (2001) J. Cell Sci., 114, pp. 81-88
  • Stern, C.M., Meitzen, J., Mermelstein, P.G., Corticotropin-releasing factor and urocortin I activate CREB through functionally selective Gβγ signaling in hippocampal pyramidal neurons (2011) Eur. J. Neurosci., 34, pp. 671-681
  • Kuo, W.L., Raf, but not MEK or ERK, is sufficient for differentiation of hippocampal neuronal cells (1996) Mol. Cell Biol., 16, pp. 1458-1470
  • Sung, J.Y., Shin, S.W., Ahn, Y.S., Chung, K.C., Basic fibroblast growth factor-induced activation of novel CREB kinase during the differentiation of immortalized hippocampal cells (2001) J. Biol. Chem., 276, pp. 13858-13866
  • Stern, C.M., Luoma, J.I., Meitzen, J., Mermelstein, P.G., Corticotropin releasing factor-induced CREB activation in striatal neurons occurs via a novel Gβγ signaling pathway (2011) PLoS One, 6, p. e18114
  • Emery, A.C., Eiden, L.E., Signaling through the neuropeptide GPCR PAC(1) induces neuritogenesis via a single linear cAMP-and ERK-dependent pathway using a novel cAMP sensor (2012) FASEB J., 26, pp. 3199-3211
  • Pozzoli, G., The activation of type 1 corticotropin releasing factor receptor (CRF-R1) inhibits proliferation and promotes differentiation of neuroblastoma cells in vitro via p27(Kip1) protein up-regulation and c-Myc mRNA down-regulation (2015) Mol. Cell Endocrinol., 412, pp. 205-215
  • Melzig, M.F., Corticotropin releasing factor inhibits proliferation of AtT-20 cells (1994) In Vitro Cell Dev. Biol. Anim., 30, pp. 741-743
  • Graziani, G., Evidence that corticotropin-releasing hormone inhibits cell growth of human breast cancer cells via the activation of CRH-R1 receptor subtype (2007) Mol. Cell Endocrinol., 264, pp. 44-49
  • Jin, L., CRH suppressed TGFbeta1-induced Epithelial-Mesenchymal Transition via induction of E-cadherin in breast cancer cells (2014) Cell Signal., 26, pp. 757-765
  • Stuhr, L.E., Wei, E.T., Reed, R.K., Corticotropin-releasing factor reduces tumor volume, halts further growth, and enhances the effect of chemotherapy in 4T1 mammary carcinoma in mice (2014) Tumour Biol., 35, pp. 1365-1370
  • Arbiser, J.L., Corticotropin-releasing hormone stimulates angiogenesis and epithelial tumor growth in the skin (1999) J. Invest. Dermatol., 113, pp. 838-842
  • Yang, S., Liu, W., Wen, J., Zhu, M., Xu, S., Corticotropin releasing hormone is correlated with tumorigenesis of gastric cancer (2013) Cancer Invest., 31, pp. 167-171
  • Koutmani, Y., Corticotropin-releasing hormone exerts direct effects on neuronal progenitor cells: Implications for neuroprotection (2013) Mol. Psychiatry, 18, pp. 300-307
  • Cibelli, G., Corsi, P., Diana, G., Vitiello, F., Thiel, G., Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways (2001) Eur. J. Neurosci., 13, pp. 1339-1348
  • Swinny, J.D., Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro (2004) Eur. J. Neurosci., 19, pp. 1749-1758
  • Swinny, J.D., Valentino, R.J., Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat (2006) Eur. J. Neurosci, 24, pp. 2481-2490
  • Chen, Y., Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 15782-15787
  • Gounko, N.V., Corticotropin-releasing factor and urocortin regulate spine and synapse formation: Structural basis for stress-induced neuronal remodeling and pathology (2013) Mol. Psychiatry, 18, pp. 86-92
  • Chen, Y., Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 13123-13128
  • Bonfiglio, J.J., Characterization of the B-Raf interactome in mouse hippocampal neuronal cells (2011) J. Proteomics, 74, pp. 186-198
  • Brunson, K.L., Chen, Y., Avishai-Eliner, S., Baram, T.Z., Stress and the developing hippocampus: A double-edged sword? (2003) Mol. Neurobiol., 27, pp. 121-136
  • Stiles, T.L., Kapiloff, M.S., Goldberg, J.L., The role of soluble adenylyl cyclase in neurite outgrowth (2014) Biochim. Biophys. Acta, 1842, pp. 2561-2568
  • Moore, S.W., Soluble adenylyl cyclase is not required for axon guidance to netrin-1 (2008) J. Neurosci., 28, pp. 3920-3924
  • Farrell, J., Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice (2008) PLoS One, 3, p. e3251
  • Huang, E.J., Reichardt, L.F., Trk receptors: Roles in neuronal signal transduction (2003) Annu. Rev. Biochem., 72, pp. 609-642
  • Ji, Y., Pang, P.T., Feng, L., Lu, B., Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons (2005) Nat. Neurosci., 8, pp. 164-172
  • Meyer-Franke, A., Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons (1998) Neuron, 21, pp. 681-693
  • Song, H.J., Ming, G.L., Poo, M.M., CAMP-induced switching in turning direction of nerve growth cones (1997) Nature, 388, pp. 275-279
  • Stessin, A.M., Soluble adenylyl cyclase mediates nerve growth factor-induced activation of Rap1 (2006) J. Biol. Chem., 281, pp. 17253-17258
  • Young, J.J., Soluble" adenylyl cyclase-generated cyclic adenosine monophosphate promotes fast migration in PC12 cells (2008) J. Neurosci. Res., 86, pp. 118-124
  • Martinez, J., Soluble adenylyl cyclase is necessary and sufficient to overcome the block of axonal growth by myelin-associated factors (2014) J. Neurosci., 34, pp. 9281-9289
  • Jiang, M., Chen, G., High Ca2+-phosphate transfection efficiency in low-density neuronal cultures (2006) Nat. Protoc., 1, pp. 695-700

Citas:

---------- APA ----------
Inda, C., Bonfiglio, J.J., Dos Santos Claro, P.A., Senin, S.A., Armando, N.G., Deussing, J.M. & Silberstein, S. (2017) . CAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells. Scientific Reports, 7(1).
http://dx.doi.org/10.1038/s41598-017-02021-7
---------- CHICAGO ----------
Inda, C., Bonfiglio, J.J., Dos Santos Claro, P.A., Senin, S.A., Armando, N.G., Deussing, J.M., et al. "CAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells" . Scientific Reports 7, no. 1 (2017).
http://dx.doi.org/10.1038/s41598-017-02021-7
---------- MLA ----------
Inda, C., Bonfiglio, J.J., Dos Santos Claro, P.A., Senin, S.A., Armando, N.G., Deussing, J.M., et al. "CAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells" . Scientific Reports, vol. 7, no. 1, 2017.
http://dx.doi.org/10.1038/s41598-017-02021-7
---------- VANCOUVER ----------
Inda, C., Bonfiglio, J.J., Dos Santos Claro, P.A., Senin, S.A., Armando, N.G., Deussing, J.M., et al. CAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells. Sci. Rep. 2017;7(1).
http://dx.doi.org/10.1038/s41598-017-02021-7