Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In all organisms, salts produce either appetitive or aversive responses depending on the concentration. While low-salt concentration in food elicits positive responses to ingest, high-salt triggers aversion. Still the mechanisms involved in this dual behavior have just started to be uncovered in some organisms. In Rhodnius prolixus, using pharmacological and behavioral assays, we demonstrated that upon high-salt detection in food a nitric oxide (NO) dependent cascade is activated. This activation involves a soluble guanylate cyclase (sGC) and the production of cyclic guanosine monophosphate (cGMP). Thus, appetitive responses to low-salt diets turn to aversion whenever this cascade is activated. Conversely, insects feed over aversive high-salt solutions when it is blocked by reducing NO levels or by affecting the sGC activity. The activation of NO/sGC/cGMP cascade commands the avoidance feeding behavior in R. prolixus. Investigations in other insect species should examine the possibility that high-salt aversion is mediated by NO/sSG/cGMP signaling. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Nitric oxide contributes to high-salt perception in a blood-sucking insect model
Autor:Cano, A.; Pontes, G.; Sfara, V.; Anfossi, D.; Barrozo, R.B.
Filiación:Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Facultad Ciencias Exactas y Naturales, Departamento Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Instituto Biodiversidad Biología Experimental y Aplicada (IBBEA), CONICET - UBA, Ciudad Universitaria, Pabellón 2, Buenos Aires, CP1428, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (3iA - UNSAM), Av. 25 de mayo y Francia, San-Martín, Buenos Aires, CP1650, Argentina
Año:2017
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1038/s41598-017-15861-0
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n1_p_Cano

Referencias:

  • Yarmolinsky, D.A., Zuker, C.S., Ryba, N.J.P., Common sense about taste: From mammmals to insects (2009) Cell, 139, pp. 234-244
  • Chandrashekar, J., The cells and peripheral representation of sodium taste in mice (2010) Nature, 464, pp. 297-301
  • Zhang, Y.V., Ni, J., Montell, C., The molecular basis for attractive salt-taste coding in Drosophila (2013) Science, 340, pp. 1334-1338
  • Liu, L., Contribution of drosophila DEG/ENaC genes to salt taste (2003) Neuron, 39, pp. 133-146
  • Dow, J.A., The essential roles of metal ions in insect homeostasis and physiology (2017) Current Opinion in Insect Science, 23, pp. 43-50
  • Kandel, E., Schwartz, J., Jessell, T., (2000) Principles of Neural Science, , McGraw-Hill
  • Galun, R., Feeding stimuli and artificial feeding (1967) Bull. World Health Organ., 36, pp. 590-593
  • Guerenstein, P.G., Nuñez, J.A., Feeding response of the haematophagous bugs Rhodnius prolixus and Triatoma infestans to saline solutions: A comparative study (1994) J. Insect Physiol., 40, pp. 747-752
  • Pontes, G., Pereira, M.H., Barrozo, R.B., Salts control feeding decisions in a blood-sucking insect (2017) J. Insect Physiol., 98, pp. 93-100
  • Friend, W.G., Smith, J.J., Factors affecting feeding by bloodsucking insects (1977) Annu. Rev. Entomol., 22, pp. 309-331
  • Lazzari, C.R., Celebrating the sequencing of the Rhodnius prolixus genome: A tribute to the memory of Vincent B (2017) Wigglesworth. J. Insect Physiol., 97, pp. 1-2
  • Barrozo, R.B., Reisenman, C.E., Guerenstein, P., Lazzari, C.R., Lorenzo, M.G., An inside look at the sensory biology of triatomines (2017) J. Insect Physiol., 97, pp. 3-19
  • Hiroi, M., Meunier, N., Marion-Poll, F., Tanimura, T., Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila (2004) J. Neurobiol., 61, pp. 333-342
  • Meunier, N., Estimation of the individual firing frequencies of two neurons recorded with a single electrode (2003) Chem. Senses, 28, pp. 671-679
  • Oka, Y., Butnaru, M., Von Buchholtz, L., Ryba, N.J.P., Zuker, C.S., High salt recruits aversive taste pathways (2013) Nature, 494, pp. 472-475
  • Alves, G., Sallé, J., Chaudy, S., Dupas, S., Manière, G., High-NaCl perception in Drosophila melanogaster (2014) J. Neurosci., 34, pp. 10884-10891
  • Bicker, G., Sources and targets of nitric oxide signalling in insect nervous systems (2001) Cell Tissue Res., 303, pp. 137-146
  • Müller, U., The nitric oxide system in insects (1997) Prog. Neurobiol., 51, pp. 363-381
  • Vincent, S.R., Nitric oxide neurons and neurotransmission (2010) Prog. Neurobiol., 90, pp. 246-255
  • Zaccone, G., Immunohistochemical investigation of the nitrergic system in the taste organ of the frog (2002) Rana Esculenta. Chem Senses, 27, pp. 825-830
  • Kretz, O., Bock, R., Lindemann, B., Occurence of nitric oxide synthase in tast buds of the rat vallate papilla (1998) Histochem J, 30, pp. 293-299
  • Goto, S., Murata, Y., Ozaki, M., Nakamura, T., Nitric oxide production in cultured taste receptor cells of blowfly, Phormia regina (2005) Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 142, p. 482
  • Schuppe, H., Cuttle, M., Newland, P.L., Nitric oxide modulates sodium taste via a cGMP-independent pathway (2007) Dev. Neurobiol., 67, pp. 219-232
  • Sfara, V., Zerba, E.N.E., Alzogaray, R.A.R., Deterrence of feeding in Rhodnius prolixus (Hemiptera: Reduviidae) after treatment of antennae with a nitric oxide donor (2011) Eur. J. Entomol., 108, pp. 701-704
  • Sfara, V., Zerba, E.N., Alzogaray, R.A., Decrease in DEET repellency caused by nitric oxide in Rhodnius prolixus (2008) Arch. Insect Biochem. Physiol., 67, pp. 1-8
  • Pontes, G., Minoli, S., Ortega Insaurralde, I., De Brito Sanchez, M.G., Barrozo, R.B., Bitter stimuli modulate the feeding decision of a blood-sucking insect via two sensory inputs (2014) J. Exp. Biol., 217, pp. 3708-3717
  • Vermehren-Schmaedick, A., Scudder, C., Timmermans, W., Morton, D.B., Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases (2011) J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol., 197, pp. 717-727
  • Prast, H., Philippu, A., Nitric oxide as modulator of neuronal function (2001) Prog. Neurobiol., 64, pp. 51-68
  • Davies, S.-A., Nitric oxide signalling in insects (2000) Insect Biochem. Mol. Biol., 30, pp. 1123-1138
  • Seno, K., Nakamura, T., Ozaki, M., Biochemical and physiological evidence that calmodulin is involved in the taste response of the sugar receptor cells of the blowfly, Phormia regina (2005) Chem. Senses, 30, pp. 497-504
  • Czech, D.A., A nitric oxide synthase inhibitor N(G)-nitro-L-arginine, attenuates glucoprivic feeding and deprivation-induced drinking in the mouse (1998) Pharmacol. Biochem. Behav., 60, pp. 601-607
  • Czech, D.A., Kazel, M.R., Harris, J., A nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester, attenuates lipoprivic feeding in mice (2003) Physiol. Behav., 80, pp. 75-79
  • Murata, Y., Mashiko, M., Ozaki, M., Amakawa, T., Nakamura, T., Intrinsic nitric oxide regulates the taste response of the sugar receptor cell in the blowfly (2004) Phormia Regina. Chem. Senses, 29, pp. 75-81
  • Ott, S.R., Jones, I.W., Burrows, M., Elphick, M.R., Sensory afferents and motor neurons as targets for nitric oxide in the locust (2000) J. Comp. Neurol., 422, pp. 521-532
  • Newland, P.I.L., Yates, P., Nitric oxide modulates salt and sugar responses via different signaling pathways (2008) Chem. Senses, 33, pp. 347-356
  • Nakamura, T., The nitric oxide-cyclic GMP cascade in sugar receptor cells of the blowfly (2005) Phormia Regina. Chem. Senses, 30, pp. 281-282
  • Herness, M.S., Gilberton, T.A., Gilbertson, T.A., Cellular mechanisms of taste transduction (1999) Annu. Rev. Physiol., 61, pp. 873-900
  • Amakawa, T., Ozaki, M., Kawata, K., Effects of cyclic GMP on the sugar receptor cell of the fly Phormia regina (1990) J. Insect Physiol., 36, pp. 281-286
  • Rosenzweig, S., Yan, W., Possible novel mechanism for bitter taste mediated through cGMP (1999) J. Neurophysiol., 81, pp. 1661-1665
  • Krizhanovsky, V., Agamy, O., Naim, M., Sucrose-stimulated subsecond transient increase in cGMP level in rat intact circumvallate taste bud cells (2000) Am J Physiol Cell Physiol, 279, pp. C120-C125
  • Brunert, D., Odorant-dependent generation of nitric oxide in mammalian olfactory sensory neurons (2009) PLoS One, 4, p. e5499
  • Collmann, C., Carlsson, M.A., Hansson, B.S., Nighorn, A., Odorant-evoked nitric oxide signals in the antennal lobe of Manduca sexta (2004) J. Neurosci., 24, pp. 6070-6077
  • Stengl, M., Zintl, R., De Vente, J., Nighorn, A., Localization of cGMP immunoreactivity and of soluble guanylyl cyclase in antennal sensilla of the hawkmoth Manduca sexta (2001) Cell Tissue Res., 304, pp. 409-421
  • Morton, D.B., Langlais, K.K., Stewart, J.A., Vermehren, A., Comparison of the properties of the five soluble guanylyl cyclase subunits in Drosophila melanogaster (2005) J. Insect Sci., 5, p. 12
  • Freeman, E.G., Dahanukar, A., Molecular neurobiology of Drosophila taste (2015) Curr. Opin. Neurobiol., 34, pp. 140-148
  • Meunier, N., Marion-Poll, F., Rospars, J.-P., Tanimura, T., Peripheral coding of bitter taste in Drosophila (2003) J. Neurobiol., 56, pp. 139-152
  • Jeong, Y.T., An odorant-binding protein required for suppression of sweet taste by bitter chemicals (2013) Neuron, 79, pp. 725-737
  • French, A.S., Dual mechanism for bitter avoidance in Drosophila (2015) J. Neurosci., 35, pp. 3990-4004
  • Chu, B., Chui, V., Mann, K., Gordon, M.D., Presynaptic gain control drives sweet and bitter taste integration in Drosophila (2014) Curr. Biol., 24, pp. 1978-1984
  • Lorenzo, M.G., Lazzari, C.R., Activity pattern in relation to refuge exploitation and feeding in Triatoma infestans (Hemiptera: Reduviidae) (1998) Acta Trop., 70, pp. 163-170
  • Barrozo, R.B., Minoli, S.A., Lazzari, C.R., Circadian rhythm of behavioural responsiveness to carbon dioxide in the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae) (2004) J. Insect Physiol., 50, pp. 249-254
  • Bodin, A., Barrozo, R.B., Couton, L., Lazzari, C.R., Temporal modulation and adaptive control of the behavioural response to odours in Rhodnius prolixus (2008) J. Insect Physiol., 54, pp. 1343-1348
  • Scholz, N.L., Labenia, J.S., De Vente, J., Graubard, K., Goy, M.F., Expression of nitric oxide synthase and nitric oxide-sensitive guanylate cyclase in the crustacean cardiac ganglion (2002) J. Comp. Neurol., 454, pp. 158-167
  • Müller, U., Hildebrandt, H., Nitric oxide/cGMP-mediated protein kinase A activation in the antennal lobes plays an important role in appetitive reflex habituation in the honeybee (2002) J. Neurosci., 22, pp. 8739-8747
  • Blaudow, R.A., Coons, L.B., Cole, J.A., Cyclic nucleotide crosstalk in salivary glands from partially fed Dermacentor variabilis (Say) (2009) J. Insect Physiol., 55, pp. 805-812
  • Katzoff, A., Ben-Gedalya, T., Susswein, A.J., Nitric oxide is necessary for multiple memory processes after learning that a food is inedible in aplysia (2002) J. Neurosci., 22, pp. 9581-9594
  • Newland, P.L., Yates, P., Nitrergic modulation of an oviposition digging rhythm in locusts (2007) J. Exp. Biol., 210, pp. 4448-4456
  • Araujo, R., (2011) Electromyogram of the Cibarial Pump and the Feeding Process in Hematophagous Hemiptera in Advances in Applied Electromyography, , InTech
  • Soares, A.C., Intravital microscopy and image analysis of Rhodnius prolixus (Hemiptera: Reduviidae) hematophagy: The challenge of blood intake from mouse skin (2014) Parasitol. Int., 63, pp. 229-236
  • Sokal, R.R., Rohlf, F.J., Biometry: The principles and practices of statistics in biological research [hardcover] (1995) Biological Research

Citas:

---------- APA ----------
Cano, A., Pontes, G., Sfara, V., Anfossi, D. & Barrozo, R.B. (2017) . Nitric oxide contributes to high-salt perception in a blood-sucking insect model. Scientific Reports, 7(1).
http://dx.doi.org/10.1038/s41598-017-15861-0
---------- CHICAGO ----------
Cano, A., Pontes, G., Sfara, V., Anfossi, D., Barrozo, R.B. "Nitric oxide contributes to high-salt perception in a blood-sucking insect model" . Scientific Reports 7, no. 1 (2017).
http://dx.doi.org/10.1038/s41598-017-15861-0
---------- MLA ----------
Cano, A., Pontes, G., Sfara, V., Anfossi, D., Barrozo, R.B. "Nitric oxide contributes to high-salt perception in a blood-sucking insect model" . Scientific Reports, vol. 7, no. 1, 2017.
http://dx.doi.org/10.1038/s41598-017-15861-0
---------- VANCOUVER ----------
Cano, A., Pontes, G., Sfara, V., Anfossi, D., Barrozo, R.B. Nitric oxide contributes to high-salt perception in a blood-sucking insect model. Sci. Rep. 2017;7(1).
http://dx.doi.org/10.1038/s41598-017-15861-0