Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Human hemoglobin (Hb) is a benchmark protein of structural biology that shaped our view of allosterism over 60 years ago, with the introduction of the MWC model based on Perutz structures of the oxy(R) and deoxy(T) states and the more recent Tertiary Two-State model that proposed the existence of individual subunit states -"r" and "t"-, whose structure is yet unknown. Cooperative oxygen binding is essential for Hb function, and despite decades of research there are still open questions related to how tertiary and quaternary changes regulate oxygen affinity. In the present work, we have determined the free energy profiles of oxygen migration and for HisE7 gate opening, with QM/MM calculations of the oxygen binding energy in order to address the influence of tertiary differences in the control of oxygen affinity. Our results show that in the α subunit the low to high affinity transition is achieved by a proximal effect that mostly affects oxygen dissociation and is the driving force of the allosteric transition, while in the β subunit the affinity change results from a complex interplay of proximal and distal effects, including an increase in the HE7 gate opening, that as shown by free energy profiles promotes oxygen uptake. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed by multiscale simulations
Autor:Bringas, M.; Petruk, A.A.; Estrin, D.A.; Capece, L.; Martí, M.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1428EHA, Argentina
Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, CONICET, Ciudad de Buenos Aires, C1428EHA, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1428EHA, Argentina
Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Ciudad de Buenos Aires, C1428EHA, Argentina
Año:2017
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1038/s41598-017-11259-0
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n1_p_Bringas

Referencias:

  • Lukin, J.A., Ho, C., The structure-function relationship of hemoglobin in solution at atomic resolution (2004) Chem. Rev., 104, pp. 1219-1230
  • Yuan, Y., Tam, M.F., Simplaceanu, V., Ho, C., A new look at hemoglobin allostery (2015) Chem. Rev., 115, pp. 1702-1724
  • Eaton, W.A., Henry, E.R., Hofrichter, J., Mozzarelli, A., Is cooperative oxygen binding by hemoglobin really understood (1999) Nat. Struct. Mol. Biol., 6, pp. 351-358
  • Eaton, W.A., Evolution of allosteric models for hemoglobin (2007) IUBMB Life, 59, pp. 586-599
  • Muirhead, H., Perutz, M.F., Structure of hæemoglobin: A three-dimensional fourier synthesis of reduced human haemoglobin at 5. 5 |[angst]| resolution (1963) Nature, 199, pp. 633-638
  • Perutz, M.F., Bolton, W., Diamond, R., Muirhead, H., Watson, H.C., Structure of Hæmoglobin: An X-ray Examination of Reduced Horse Hæmoglobin (1964) Nature, 203, pp. 687-690
  • Wyman, J., Linked functions and reciprocal effects in hemoglobin: A second look (1964) Advances in Protein Chemistry, 19, pp. 223-286. , Elsevier
  • Pauling, L., The oxygen equilibrium of hemoglobin and its structural interpretation (1935) Proc. Natl. Acad. Sci., 21, pp. 186-191
  • Koshland, D.E., Némethy, G., Filmer, D., Comparison of experimental binding data and theoretical models in proteins containing subunits (1966) Biochemistry (Mosc.), 5, pp. 365-385
  • Perutz, M.F., Fermi, G., Luisi, B., Shaanan, B., Liddington, R.C., Stereochemistry of cooperative mechanisms in hemoglobin (1987) Cold Spring Harb. Symp. Quant. Biol., 52, pp. 555-565
  • Perutz, M.F., Wilkinson, A.J., Paoli, M., Dodson, G.G., The stereochemical mechanism of the cooperative effects in hemoglobin revisited (1998) Annu. Rev. Biophys. Biomol. Struct., 27, pp. 1-34
  • Lee, A.W., Karplus, M., Structure-specific model of hemoglobin cooperativity (1983) Proc. Natl. Acad. Sci., 80, pp. 7055-7059
  • Lee, A.W., Karplus, M., Poyart, C., Bursaux, E., Analysis of proton release in oxygen binding by hemoglobin: Implications for the cooperative mechanism (1988) Biochemistry (Mosc.), 27, pp. 1285-1301
  • Henry, E.R., Bettati, S., Hofrichter, J., Eaton, W.A., A tertiary two-state allosteric model for hemoglobin (2002) Biophys. Chem., 98, pp. 149-164
  • Mozzarelli, A., Rivetti, C., Rossi, G.L., Henry, E.R., Eaton, W.A., Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect (1991) Nature, 351, pp. 416-419
  • Rivetti, C., Mozzarelli, A., Rossi, G.L., Henry, E.R., Eaton, W.A., Oxygen binding by single crystals of hemoglobin (1993) Biochemistry (Mosc.), 32, pp. 2888-2906
  • Lyons, K.B., Friedman, J.M., Fleury, P.A., Nanosecond transient Raman spectra of photolysed carboxyhaemoglobin (1978) Nature, 275, pp. 565-566
  • Viappiani, C., New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels (2004) Proc. Natl. Acad. Sci., 101, pp. 14414-14419
  • Tsai, A., Martin, E., Berka, V., Olson, J.S., How do heme-protein sensors exclude oxygen lessons learned from cytochrome c, nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase (2012) Antioxid. Redox Signal., 17, pp. 1246-1263
  • Unzai, S., Eich, R., Shibayama, N., Olson, J.S., Morimoto, H., Rate constants for o2 and co binding to the and subunits within the r and t states of human hemoglobin (1998) J. Biol. Chem., 273, pp. 23150-23159
  • Bidon-Chanal, A., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins Struct. Funct. Bioinforma., 64, pp. 457-464
  • Boechi, L., Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O (2008) Proteins Struct. Funct. Bioinforma., 73, pp. 372-379
  • Forti, F., Boechi, L., Estrin, D.A., Marti, M.A., Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins (2011) J. Comput. Chem., 32, pp. 2219-2231
  • Boechi, L., Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7 (2013) J. Biol. Chem., 288, pp. 6754-6762
  • Bustamante, J.P., Evolutionary and functional relationships in the truncated hemoglobin family (2016) PLOS Comput. Biol., 12, p. e1004701
  • Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme protein oxygen affinity regulation exerted by proximal effects (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
  • Marti, M.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem., 100, pp. 761-770
  • Capece, L., Small ligand-globin interactions: Reviewing lessons derived from computer simulation (2013) Biochim. Biophys. Acta BBA-Proteins Proteomics, 1834, pp. 1722-1738
  • Park, S.-Y., Yokoyama, T., Shibayama, N., Shiro, Y., Tame, J.R.H., 1. 25 å resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms (2006) J. Mol. Biol., 360, pp. 690-701
  • Hub, J.S., Kubitzki, M.B., De Groot, B.L., Spontaneous quaternary and tertiary t-r transitions of human hemoglobin in molecular dynamics simulation (2010) PLoS Comput. Biol., 6, p. e1000774
  • Alcantara, R.E., Xu, C., Spiro, T.G., Guallar, V., A quantum-chemical picture of hemoglobin affinity (2007) Proc. Natl. Acad. Sci., 104, pp. 18451-18455
  • Fischer, S., Olsen, K.W., Nam, K., Karplus, M., Unsuspected pathway of the allosteric transition in hemoglobin (2011) Proc. Natl. Acad. Sci., 108, pp. 5608-5613
  • Lindorff-Larsen, K., Improved side-chain torsion potentials for the Amber ff99SB protein force field (2010) Proteins Struct. Funct. Bioinforma. NA-NA
  • Capece, L., Estrin, D.A., Marti, M.A., Dynamical characterization of the heme no oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition (2008) Biochemistry (Mosc.), 47, pp. 9416-9427
  • Bidon-Chanal, A., Martí, M.A., Estrín, D.A., Luque, F.J., Exploring the nitric oxide detoxification mechanism of mycobacterium tuberculosis truncated haemoglobin n (2009) SelfOrganization of Molecular Systems, pp. 33-47. , (eds. Russo, N., Antonchenko, V. Y. & Kryachko, E. S.) Springer Netherlands
  • Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., Exploring the molecular basis of heme coordination in human neuroglobin (2008) Proteins Struct. Funct. Bioinforma., 71, pp. 695-705
  • Ramírez, C.L., Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions (2016) J. Chem. Theory Comput., 12, pp. 3390-3397
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems (1993) J. Chem. Phys., 98, pp. 10089-10092
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
  • Soler, J.M., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14, pp. 2745-2779
  • Crespo, A., Theoretical study of the truncated hemoglobin hbn: Exploring the molecular basis of the no detoxification mechanism (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Martí, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric oxide interaction with cytochrome c and its relevance to guanylate cyclase. Why does the iron histidine bond break (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
  • Martí, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., QMMM Study of Nitrite Reduction by Nitrite Reductase of Pseudomonas aeruginosa (2004) J. Phys. Chem. B, 108, pp. 18073-18080
  • Bustamante, J.P., A quantitative model for oxygen uptake and release in a family of hemeproteins (2016) Bioinformatics, 32, pp. 1805-1813
  • Jarzynski, C., Nonequilibrium equality for free energy differences (1997) Phys. Rev. Lett., 78, pp. 2690-2693
  • Ramírez, C.L., Martí, M.A., Roitberg, A.E., Steered molecular dynamics methods applied to enzyme mechanism and energetics (2016) Methods in Enzymology, 578, pp. 123-143. , Elsevier
  • Gore, J., Ritort, F., Bustamante, C., Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements (2003) Proc. Natl. Acad. Sci., 100, pp. 12564-12569
  • Nutt, D.R., Meuwly, M., Theoretical investigation of infrared spectra and pocket dynamics of photodissociated carbonmonoxy myoglobin (2003) Biophys. J., 85, pp. 3612-3623
  • Nutt, D.R., Meuwly, M., CO migration in native and mutant myoglobin: Atomistic simulations for the understanding of protein function (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 5998-6002
  • Arcon, J.P., Rosi, P., Petruk, A.A., Marti, M.A., Estrin, D.A., Molecular mechanism of myoglobin autoxidation: Insights from computer simulations (2015) J. Phys. Chem. B, 119, pp. 1802-1813
  • Gelin, B.R., Karplus, M., Mechanism of tertiary structural change in hemoglobin (1977) Proc. Natl. Acad. Sci., 74, pp. 801-805
  • Warshel, A., Energy-structure correlation in metalloporphyrins and the control of oxygen binding by hemoglobin (1977) Proc. Natl. Acad. Sci., 74, pp. 1789-1793
  • Mouawad, L., Perahia, D., Robert, C.H., Guilbert, C., New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations (2002) Biophys. J., 82, pp. 3224-3245
  • Perutz, M.F., Stereochemistry of cooperative effects in haemoglobin: Haem-haem interaction and the problem of allostery (1970) Nature, 228, pp. 726-734
  • Jones, E.M., Differential control of heme reactivity in alpha and beta subunits of hemoglobin: A combined raman spectroscopic and computational study (2014) J. Am. Chem. Soc., 136, pp. 10325-10339
  • Nagai, K., Distal residues in the oxygen binding site of haemoglobin studied by protein engineering (1987) Nature, 329, pp. 858-860
  • Aj, M., Js, O., Jp, R.J.T., The assignment of carbon monoxide association rate constants to the alpha and beta subunits in native and mutant human deoxyhemoglobin tetramers (1991) J. Biol. Chem., 266, pp. 21631-21639
  • Martí, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) JBIC J. Biol. Inorg. Chem., 8, pp. 595-600
  • Chan, N.-L., Kavanaugh, J.S., Rogers, P.H., Arnone, A., Crystallographic Analysis of the Interaction of Nitric Oxide with Quaternary-T Human Hemoglobin (2004) Biochemistry (Mosc.), 43, pp. 118-132
  • Lucas, M.F., Guallar, V., An atomistic view on human hemoglobin carbon monoxide migration processes (2012) Biophys. J., 102, pp. 887-896
  • Viappiani, C., Experimental basis for a new allosteric model for multisubunit proteins (2014) Proc. Natl. Acad. Sci., 111, pp. 12758-12763

Citas:

---------- APA ----------
Bringas, M., Petruk, A.A., Estrin, D.A., Capece, L. & Martí, M.A. (2017) . Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed by multiscale simulations. Scientific Reports, 7(1).
http://dx.doi.org/10.1038/s41598-017-11259-0
---------- CHICAGO ----------
Bringas, M., Petruk, A.A., Estrin, D.A., Capece, L., Martí, M.A. "Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed by multiscale simulations" . Scientific Reports 7, no. 1 (2017).
http://dx.doi.org/10.1038/s41598-017-11259-0
---------- MLA ----------
Bringas, M., Petruk, A.A., Estrin, D.A., Capece, L., Martí, M.A. "Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed by multiscale simulations" . Scientific Reports, vol. 7, no. 1, 2017.
http://dx.doi.org/10.1038/s41598-017-11259-0
---------- VANCOUVER ----------
Bringas, M., Petruk, A.A., Estrin, D.A., Capece, L., Martí, M.A. Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed by multiscale simulations. Sci. Rep. 2017;7(1).
http://dx.doi.org/10.1038/s41598-017-11259-0