Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Lossless quantum data compression with exponential penalization: An operational interpretation of the quantum Rényi entropy
Autor:Bellomo, G.; Bosyk, G.M.; Holik, F.; Zozor, S.
Filiación:CONICET-Universidad de Buenos Aires, Instituto de Investigación en Ciencias de la Computación (ICC), Buenos Aires, Argentina
Instituto de Física La Plata, UNLP, CONICET, Facultad de Ciencias Exactas, Casilla de Correo 67, La Plata, 1900, Argentina
Univ. Grenoble Alpes, CNRS, Grenoble INP Institute of Engineering, GIPSALab, Grenoble, 38000, France
Palabras clave:entropy; information processing
Año:2017
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1038/s41598-017-13350-y
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n1_p_Bellomo

Referencias:

  • Shannon, C.E., A mathematical theory of communication (1948) Bell System Technical Journal, 27, pp. 379-423. , https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
  • Cover, T.M., Thomas, J.A., (2006) Elements of Information Theory, , (John Wiley & Sons)
  • Kraft, L.J., (1949) A Device for Quantizing, Grouping, and Coding Amplitude-modulated Pulses, , Ph.D. thesis, Massachusetts Institute of Technology
  • McMillan, B., Two inequalities implied by unique decipherability (1956) IRE Transactions on Information Theory, 2, pp. 115-116. , https://doi.org/10.1109/TIT.1956.1056818
  • Campbell, L., A coding theorem and Rényi's entropy (1965) Information and Control, 8, pp. 423-429. , http://www.sciencedirect.com/science/article/pii/S0019995865903323, https://doi.org/10.1016/S0019-9958(65)90332-3
  • Yamano, T., Information theory based on nonadditive information content (2001) Phys. Rev. E, 63, p. 046105. , https://doi.org/10.1103/PhysRevE.63.046105
  • Baer, M.B., Source coding for quasiarithmetic penalties (2006) IEEE Transactions on Information Theory, 52, pp. 4380-4393. , https://doi.org/10.1109/TIT.2006.881728
  • Bercher, J.-F., Source coding with escort distributions and Rényi entropy bounds (2009) Physics Letters A, 373, pp. 3235-3238. , https://doi.org/10.1016/j.physleta.2009.07.015, www. science direct. com/ science/ article/ pii/S037596 010900 838X
  • Chapeau-Blondeau, F., Delahaies, A., Rousseau, D., Source coding with Tsallis entropy (2011) Electron. Lett., 47, pp. 187-188. , https://doi.org/10.1049/el.2010.2792
  • Rényi, A., On measures of entropy and information (1961) Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, pp. 547-561
  • Campbell, L.L., Definition of entropy by means of a coding problem (1966) Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6, pp. 113-118. , https://doi.org/10.1007/BF00537132
  • Schumacher, B., Westmoreland, M.D., Indeterminate-length quantum coding (2001) Phys. Rev. A, 64, p. 042304. , https://doi.org/10.1103/PhysRevA.64.042304
  • Bostroem, K., Felbinger, T., Lossless quantum data compression and variable-length coding (2002) Phy. Rev. A, 65, p. 032313. , https://doi.org/10.1103/Phys-RevA.65.032313
  • Koashi, M., Imoto, N., Quantum information is incompressible without errors (2002) Phy. Rev. Lett., 89, p. 097904. , https://doi.org/10.1103/PhysRevLett.89.097904
  • Ahlswede, R., Cai, N., On lossless quantum data compression and quantum variable-length codes (2003) Quantum Information Processing, pp. 66-78. , In Leuchs, G. & Beth, T. (eds.) chap. 6, (Wiley-VCH)
  • Ahlswede, R., Cai, N., On lossless quantum data compression with a classical helper (2004) IEEE Transactions on Information Theory, 50, pp. 1208-1219. , https://doi.org/10.1109/TIT.2004.828071
  • Müller, M., Rogers, C., (2008) Quantum Bit Strings and Prefix-free Hilbert Spaces, , https://arxiv.org/abs/0804.0022, arXiv preprint arXiv:0804.0022
  • Müller, M., Rogers, C., Nagarajan, R., Lossless quantum prefix compression for communication channels that are always open (2009) Phy. Rev. A, 79, p. 012302. , https://doi.org/10.1103/PhysRevA.79.012302
  • Hayashi, M., Universal approximation of multi-copy states and universal quantum lossless data compression (2010) Communications in Mathematical Physics, 293, pp. 171-183. , https://doi.org/10.1007/s00220-009-0909-y
  • Hayashi, M., (2017) A Group Theoretic Approach to Quantum Information, , (Springer, Berlin)
  • Huffman, D.A., A method for the construction of minimum-redundancy codes (1952) Proceedings of the IRE, 40, pp. 1098-1101. , https://doi.org/10.1109/JRPROC.1952.273898
  • Schumacher, B., Westmoreland, M.D., Relative entropy in quantum information theory (2002) Contemp. Math., 305, pp. 265-290
  • Kaltchenko, A., Reexamination of quantum data compression and relative entropy (2008) Phy. Rev. A, 78, p. 022311. , https://doi.org/10.1103/PhysRevA.78.022311
  • Parker, D.S., Conditions for optimality of the Huffman algorithms (1980) SIAM Journal on Computing, 9, pp. 470-489. , https://doi.org/10.1137/0209035
  • Humblet, P.A., Generalization of the Huffman coding to minimize the probability of buffer overflow (1981) IEEE Transactions on Inf. Theory, 27, pp. 230-232. , https://doi.org/10.1109/TIT.1981.1056322
  • Hayashi, M., Exponents of quantum fixed-length pure-state source coding (2002) Phys. Rev. A, 66, p. 032321. , https://doi.org/10.1103/PhysRevA.66.032321
  • Hayashi, M., (2017) Quantum Information Theory, , (Springer, Berlin)
  • Birkhoff, G., Three observations on linear algebra (1946) Universidad Nacional de Tucumán. Revista. Serie A, Matématica y Física Teórica, 5, pp. 147-151
  • Bhatia, R., (1997) Matrix Analysis, , (Springer Verlag, New-York)
  • Petz, D., Quasi-entropies for finite quantum systems (1986) Reports on Math. Phy., 23, pp. 57-65. , https://doi.org/10.1016/0034-4877(86)90067-4

Citas:

---------- APA ----------
Bellomo, G., Bosyk, G.M., Holik, F. & Zozor, S. (2017) . Lossless quantum data compression with exponential penalization: An operational interpretation of the quantum Rényi entropy. Scientific Reports, 7(1).
http://dx.doi.org/10.1038/s41598-017-13350-y
---------- CHICAGO ----------
Bellomo, G., Bosyk, G.M., Holik, F., Zozor, S. "Lossless quantum data compression with exponential penalization: An operational interpretation of the quantum Rényi entropy" . Scientific Reports 7, no. 1 (2017).
http://dx.doi.org/10.1038/s41598-017-13350-y
---------- MLA ----------
Bellomo, G., Bosyk, G.M., Holik, F., Zozor, S. "Lossless quantum data compression with exponential penalization: An operational interpretation of the quantum Rényi entropy" . Scientific Reports, vol. 7, no. 1, 2017.
http://dx.doi.org/10.1038/s41598-017-13350-y
---------- VANCOUVER ----------
Bellomo, G., Bosyk, G.M., Holik, F., Zozor, S. Lossless quantum data compression with exponential penalization: An operational interpretation of the quantum Rényi entropy. Sci. Rep. 2017;7(1).
http://dx.doi.org/10.1038/s41598-017-13350-y