Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Fluorescence nanoscopy imaging permits the observation of periodic supramolecular protein structures in their natural environment, as well as the unveiling of previously unknown protein periodic structures. Deciphering the biological functions of such protein nanostructures requires systematic and quantitative analysis of large number of images under different experimental conditions and specific stimuli. Here we present a method and an open source software for the automated quantification of protein periodic structures in super-resolved images. Its performance is demonstrated by analyzing the abundance and regularity of the spectrin membrane-associated periodic skeleton (MPS) in hippocampal neurons of 2 to 40 days in vitro, imaged by STED and STORM nanoscopy. The automated analysis reveals that both the abundance and the regularity of the MPS increase over time and reach maximum plateau values after 14 DIV. A detailed analysis of the distributions of correlation coefficients provides indication of dynamical assembly and disassembly of the MPS. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Automated quantification of protein periodic nanostructures in fluorescence nanoscopy images: Abundance and regularity of neuronal spectrin membrane-associated skeleton
Autor:Barabas, F.M.; Masullo, L.A.; Bordenave, M.D.; Giusti, S.A.; Unsain, N.; Refojo, D.; Cáceres, A.; Stefani, F.D.
Filiación:Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Buenos Aires, C1425FQD, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1 Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Laboratorio de Neurobiología Molecular, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Godoy Cruz, 2390, Buenos Aires, C1425FQD, Argentina
Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC, CONICET), Friuli 2434, Córdoba, 5016, Argentina
Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre S/n, Córdoba, 5000, Argentina
Año:2017
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1038/s41598-017-16280-x
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v7_n1_p_Barabas

Referencias:

  • Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission (2000) Proc. Natl. Acad. Sci., 97, pp. 8206-8210
  • Hell, S.W., Wichmann, J., Breaking the diffraction resolution limit by stimulated emission: Stimulated emission-depletion fluorescence microscopy (1994) Opt. Lett., 19, pp. 780-782
  • Rust, M.J., Bates, M., Zhuang, X., Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) (2006) Nat. Methods, 3, pp. 793-795
  • Betzig, E., Imaging intracellular fluorescent proteins at nanometer resolution (2006) Science, 313, pp. 1642-1645
  • Göttfert, F., Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution (2013) Biophys. J., 105, pp. L01-3
  • Xu, K., Zhong, G., Zhuang, X., Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons (2013) Science, 339, pp. 452-456
  • Balzarotti, F., Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes (2017) Science, 355, pp. 606-612
  • Bai, Y., Luo, Q., Liu, J., Protein self-assembly via supramolecular strategies (2016) Chem. Soc. Rev., 45, pp. 2756-2767
  • Loschberger, A., Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution (2012) J. Cell Sci., 125, pp. 570-575
  • Szymborska, A., Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging (2013) Science, 341, pp. 655-658
  • D'este, E., Subcortical cytoskeleton periodicity throughout the nervous system (2016) Sci. Rep., 6, p. 22741
  • He, J., Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species (2016) Proc. Natl. Acad. Sci., 113, pp. 6029-6034
  • Zhong, G., Developmental mechanism of the periodic membrane skeleton in axons (2014) Elife, 3, pp. 1-21
  • Galamhos, C., Matas, J., Kittler, J., Progressive probabilistic Hough transform for line detection (1999) Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), p. 554. , https://doi.org/10.1109/CVPR.1999.786993, IEEE Comput. Soc
  • Giusti, S.A., MicroRNA-9 controls dendritic development by targeting REST (2014) Elife, 3, pp. 1-22
  • Vogl, A.M., Neddylation inhibition impairs spine development, destabilizes synapses and deteriorates cognition (2015) Nat. Neurosci., 18, pp. 239-251
  • Harlow, E., Lane, D., Mounting samples in gelvatol or mowiol (2006) Cold Spring Harb. Protoc., pp. pdb-prot4461
  • Barabas, F.M., Masullo, L.A., Stefani, F.D., Tormenta: An open source Python-powered control software for camera based optical microscopy (2016) Rev. Sci. Instrum., 87, p. 126103
  • Ovesný, M., Kížek, P., Borkovec, J., Švindrych, Z., Hagen, G.M., ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging (2014) Bioinformatics, 30, pp. 2389-2390
  • Schönle, A., (2006) Imspector Image Acquisition & Analysis Software, 10. , http://www.imspector.de

Citas:

---------- APA ----------
Barabas, F.M., Masullo, L.A., Bordenave, M.D., Giusti, S.A., Unsain, N., Refojo, D., Cáceres, A.,..., Stefani, F.D. (2017) . Automated quantification of protein periodic nanostructures in fluorescence nanoscopy images: Abundance and regularity of neuronal spectrin membrane-associated skeleton. Scientific Reports, 7(1).
http://dx.doi.org/10.1038/s41598-017-16280-x
---------- CHICAGO ----------
Barabas, F.M., Masullo, L.A., Bordenave, M.D., Giusti, S.A., Unsain, N., Refojo, D., et al. "Automated quantification of protein periodic nanostructures in fluorescence nanoscopy images: Abundance and regularity of neuronal spectrin membrane-associated skeleton" . Scientific Reports 7, no. 1 (2017).
http://dx.doi.org/10.1038/s41598-017-16280-x
---------- MLA ----------
Barabas, F.M., Masullo, L.A., Bordenave, M.D., Giusti, S.A., Unsain, N., Refojo, D., et al. "Automated quantification of protein periodic nanostructures in fluorescence nanoscopy images: Abundance and regularity of neuronal spectrin membrane-associated skeleton" . Scientific Reports, vol. 7, no. 1, 2017.
http://dx.doi.org/10.1038/s41598-017-16280-x
---------- VANCOUVER ----------
Barabas, F.M., Masullo, L.A., Bordenave, M.D., Giusti, S.A., Unsain, N., Refojo, D., et al. Automated quantification of protein periodic nanostructures in fluorescence nanoscopy images: Abundance and regularity of neuronal spectrin membrane-associated skeleton. Sci. Rep. 2017;7(1).
http://dx.doi.org/10.1038/s41598-017-16280-x