Artículo

Morinière, J.; Van Dam, M.H.; Hawlitschek, O.; Bergsten, J.; Michat, M.C.; Hendrich, L.; Ribera, I.; Toussaint, E.F.A.; Balke, M. "Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods" (2016) Scientific Reports. 6
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The underlying mechanisms responsible for the general increase in species richness from temperate regions to the tropics remain equivocal. Many hypotheses have been proposed to explain this astonishing pattern but additional empirical studies are needed to shed light on the drivers at work. Here we reconstruct the evolutionary history of the cosmopolitan diving beetle subfamily Colymbetinae, the majority of which are found in the Northern hemisphere, hence exhibiting an inversed latitudinal diversity gradient. We reconstructed a dated phylogeny using 12 genes, to investigate the biogeographical history and diversification dynamics in the Colymbetinae. We aimed to identify the role that phylogenetic niche conservatism plays in the inversed diversification pattern seen in this group. Our results suggest that Colymbetinae originated in temperate climates, which supports the hypothesis that their distribution is the result of an ancestral adaptation to temperate environmental conditions rather than tropical origins, and that temperate niche conservatism can generate and/or maintain inverse latitudinal diversity gradients.

Registro:

Documento: Artículo
Título:Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods
Autor:Morinière, J.; Van Dam, M.H.; Hawlitschek, O.; Bergsten, J.; Michat, M.C.; Hendrich, L.; Ribera, I.; Toussaint, E.F.A.; Balke, M.
Filiación:SNSB-Bavarian State Collection of Zoology, Münchhausenstrasse 21, Munich, 81247, Germany
Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Maritim de la Barceloneta 37, Barcelona, 08003, Spain
Department of Zoology, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
IBBEA, CONICET-UBA, Laboratory of Entomology-DBBE-FCEN, University of Buenos Aires, Buenos Aires, Argentina
Department of Ecology and Evolutionary Biology, Division of Entomology, Biodiversity Institute, University of Kansas, Lawrence, KS 66045, United States
GeoBioCenter, Ludwig-Maximilians-Universität München, Munich, Germany
Palabras clave:fresh water; insect protein; animal; beetle; biodiversity; classification; evolution; genetics; phylogeny; species difference; tropic climate; Animals; Biodiversity; Biological Evolution; Coleoptera; Fresh Water; Insect Proteins; Phylogeny; Species Specificity; Tropical Climate
Año:2016
Volumen:6
DOI: http://dx.doi.org/10.1038/srep26340
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
CAS:Insect Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v6_n_p_Moriniere

Referencias:

  • Bates, H.W., The Naturalist on the River Amazons: A Record of Adventures, Habits of Animals, Sketches of Brazilian and Indian Life, and Aspects of Nature under the Equator, during Eleven Years of Travel. with a Memoir of the Author, by Edward Clodd (1892) J. Murray
  • Condamine, F.L., Sperling, F.A., Wahlberg, N., Rasplus, J.Y., Kergoat, G.J., What causes latitudinal gradients in species diversity?Evolutionary processes and ecological constraints on swallowtail biodiversity (2012) Ecol. Let., 15 (3), pp. 267-277
  • Hillebrand, H., On the generality of the latitudinal diversity gradient (2004) Am. Nat., 163 (2), pp. 192-211
  • Mittelbach, G.G., Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography (2007) Ecol. Let., 10 (4), pp. 315-331
  • Pianka, E.R., Latitudinal gradients in species diversity: A review of concepts (1966) Am. Nat., 910 (100), pp. 33-46
  • Rolland, J., Condamine, F.L., Jiguet, F., Morlon, H., Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient (2014) PLoS Biol., 12 (1), p. e1001775
  • Weir, J.T., Schluter, D., The latitudinal gradient in recent speciation and extinction rates of birds and mammals (2007) Science., 315 (5818), pp. 1574-1576
  • Willig, M.R., Kaufman, D.M., Stevens, R.D., Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis (2003) Annu. Rev. Ecol. Evol. Syst., 34, pp. 273-309
  • Visser, V., Clayton, W.D., Simpson, D.A., Freckleton, R.P., Osborne, C.P., Mechanisms driving an unusual latitudinal diversity gradient for grasses (2014) Global Ecol. Biogeogr., 23 (1), pp. 61-75
  • McKenna, D.D., Farrell, B.D., Tropical forests are both evolutionary cradles and museums of leaf beetle diversity (2006) PNAS., 103 (29), pp. 10947-10951
  • Stebbins, G.L., (1974) Flowering Plants: Evolution above the Species Level, , E. Arnold, London
  • Chown, S.L., Gaston, K.J., Areas Cradles and museums: The latitudinal gradient in species richness (2000) Trends Ecol. Evol., 15 (8), pp. 311-315
  • Fischer, A.G., Latitudinal variations in organic diversity (1960) Evolution, 14 (1), pp. 64-81
  • Jablonski, D., Roy, K., Valentine, J.W., Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient (2006) Science., 314 (5796), pp. 102-106
  • Kerkhof, A.J., Moriarty, P.E., Weiser, M.D., The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis (2014) PNAS., 111 (22), pp. 8125-8130
  • Crisp, M.D., Cook, L.G., Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes? (2012) New Phytol, 196 (3), pp. 681-694
  • Wiens, J.J., Donoghue, M.J., Historical biogeography, ecology and species richness (2004) Trends Ecol, Evol., 19 (12), pp. 639-644
  • Zanne, A.E., Tree keys to the radiation of angiosperms into freezing environments (2014) Nature, 506 (7486), pp. 89-92
  • Stephens, P.R., Wiens, J.J., Explaining species richness from continents to communities: The time-for-speciation efect in emydid turtles (2003) Am. Nat., 161 (1), pp. 112-128
  • Ricklefs, R.E., Schluter, D., (1993) Species Diversity in Ecological Communities: Historical and Geographical Perspectives, , University of Chicago Press
  • Rohde, K., (1992) Latitudinal Gradients in Species Diversity: The Search for the Primary Cause., pp. 514-527. , Oikos
  • Mannion, P.D., Upchurch, P., Benson, R.B., Goswami, A., The latitudinal biodiversity gradient through deep time (2014) Trends Ecol. Evol., 29 (1), pp. 42-50
  • Wiens, J.J., Sukumaran, J., Pyron, R.A., Brown, R.M., Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae) (2009) Evolution, 63 (5), pp. 1217-1231
  • Cook, R.E., Variation in species density of North American birds (1969) Syst. Biol., 18 (1), pp. 63-84
  • Gauld, I.D., Latitudinal gradients in ichneumonid species richness in Australia (1986) Ecol. Entomol, 11 (2), pp. 155-161
  • Hawkins, B.A., (1994) Pattern and Process in Host-parasitoid Interactions, , Cambridge University Press
  • Janzen, D.H., The peak in North American ichneumonid species richness lies between 38 degrees and 42 degrees N (1981) Ecology, pp. 532-537
  • Owen, D.F., Owen, J., Species diversity in temperate and tropical Ichneumonidae (1974) Nature., 249 (5457), pp. 583-584
  • Santelices, B., Phytogeographic characterization of the temperate coast of Pacifc South America (1980) Phycologia, 19 (1), pp. 1-12
  • Dixon, A.F.G., Kindlmann, P., Leps, J., Holman, J., Why there are so few species of aphids, especially in the tropics (1987) Am. Nat., 129, pp. 580-592
  • Kindlmann, P., Schödelbauerová, I., Dixon, A.F., (2007) Inverse Latitudinal Gradients in Species Diversity. Scaling Biodiversity., pp. 246-257. , Cambridge University Press
  • Smith, S.A., Stephens, P.R., Wiens, J.J., Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs (2005) Evolution., 59 (11), pp. 2433-2450
  • Balke, M., New Guinea highland origin of a widespread arthropod supertramp (2009) Proc. Soc. London, Ser. B., 276, pp. 2359-2367
  • Morinière, J., Anisomeriini diving beetles-an Atlantic-Pacifc Island disjunction on Tristan da Cunha and Robinson Crusoe Island (2015) Juan Fernández-Cladistics, 31 (2), pp. 166-176
  • Toussaint, E.F., Sagata, K., Surbakti, S., Hendrich, L., Balke, M., Australasian sky islands act as a diversity pump facilitating peripheral speciation and complex reversal from narrow endemic to widespread ecological supertramp (2013) Ecol. Evol., 3 (4), pp. 1031-1049
  • Nilsson, A.N., (2013) A World Catalogue of the Family Dytiscidae, or the Diving Beetles (Coleoptera, Adephaga), , Umeå
  • Ribera, I., Nilsson, A.N., Vogler, A.P., Phylogeny and historical biogeography of Agabinae diving beetles (Coleoptera) inferred from mitochondrial DNA sequences (2004) Mol. Phylogenet Evol., 30, pp. 545-562
  • Tänzler, R., Toussaint, E.F., Suhardjono, Y.R., Balke, M., Riedel, A., Multiple transgressions of Wallace's Line explain diversity of fightless Trigonopterus weevils on Bali (2014) Proc. Soc. London, Ser. B., 281 (1782), p. 20132528
  • Maddison, W.P., Maddison, D.R., (2015) Mesquite: A Modular System for Evolutionary Analysis. Version 3.04, , http://mesquiteproject.org
  • Golobof, P.A., Farris, J.S., Nixon, K.C., TNT a free program for phylogenetic analysis (2008) Cladistics., 24 (5), pp. 774-786
  • Silvestro, D., Michalak, I., RaxmlGUI: A graphical front-end for RAxML (2012) Org. Divers. Evol., 12 (4), pp. 335-337
  • Lanfear, R., Calcott, B., Ho, S.Y., Guindon, S., PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses (2012) Mol. Biol. Evol., 29 (6), pp. 1695-1701
  • Ronquist, F., MrBayes 3.2: Efcient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol., 61 (3), pp. 539-542
  • Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evol. Biol., 7 (1), p. 214
  • Toussaint, E.F., The towering orogeny of New Guinea as a trigger for arthropod megadiversity (2014) Nat. Comm
  • Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol. Biol. Evol., 29 (8), pp. 1969-1973
  • Matzke, N.J., (2013) BioGeoBEARS: BioGeography with Bayesian (And Likelihood) Evolutionary Analysis in R Scripts, , http://CRAN.R-project.org/package=BioGeoBEARS, R package 'BioGeoBEARS'. URL
  • Matzke, N.J., Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades (2014) Syst. Biol., 63 (6), pp. 951-970
  • Ree, R.H., Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis (2005) Evolution, 59 (2), pp. 257-265
  • Ree, R.H., Smith, S.A., Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis (2008) Syst. Biol., 57 (1), pp. 4-14
  • Ronquist, F., Dispersal-vicariance analysis: A new approach to the quantifcation of historical biogeography (1997) Syst. Biol., 46 (1), pp. 195-203
  • Landis, M.J., Matzke, N.J., Moore, B.R., Huelsenbeck, J.P., Bayesian analysis of biogeography when the number of areas is large (2013) Syst. Biol
  • Miller, K.G., The Phanerozoic record of global sea-level change (2005) Science., 310 (5752), pp. 1293-1298
  • Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Global continental and ocean basin reconstructions since 200Ma (2012) Earth Sci. Rev., 113 (3), pp. 212-270
  • Hernandez, P.A., Graham, C.H., Master, L.L., Albert, D.L., The efect of sample size and species characteristics on performance of diferent species distribution modeling methods (2006) Ecography, 29 (5), pp. 773-785
  • Evans, M.E., Smith, S.A., Flynn, R.S., Donoghue, M.J., Climate,Niche Evolution and Diversifcation of the "bird-Cage" Evening Primroses (Oenothera, Sections Anogra and Kleinia) (2009) Am. Nat., 173 (2), pp. 225-240
  • Hawlitschek, O., Porch, N., Hendrich, L., Balke, M., Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding (2011) PLoS One., 6 (2), pp. 1-14
  • Hawlitschek, O., Pleistocene climate change promoted rapid diversifcation of aquatic invertebrates in Southeast Australia (2012) BMC Evol. Biol., 12 (1), p. 142
  • Elith, J., A statistical explanation of Maxent for ecologists (2011) Divers. Distrib., 17 (1), pp. 43-57
  • Phillips, S.J., Dudík, M., Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation (2008) Ecography., 31 (2), pp. 161-175
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M., Townsend Peterson, A., Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar (2007) J. Biogeogr., 34 (1), pp. 102-117
  • Hijmans, R.J., Van Etten, J., (2012) Raster: Geographic Analysis and Modeling with Raster Data. R Package 'Raster', , http://cran.r-project.org/web/packages/raster.pdf
  • Heibl, C., Calenge, C., Heibl, M.C., (2013) R Package 'Phyloclim', , http://cran.r-project.org/web/packages/phyloclim/index.html
  • Warren, D.L., Glor, R.E., Turelli, M., ENMTools: A toolbox for comparative studies of environmental niche models (2010) Ecography, 33 (3), pp. 607-611
  • Pyron, R.A., Costa, G.C., Patten, M.A., Burbrink, F.T., Phylogenetic niche conservatism and the evolutionary basis of ecological speciation (2014) Biol.Rev., 90 (4), pp. 1248-1262
  • Wiens, J.J., Niche conservatism as an emerging principle in ecology and conservation biology (2010) Ecol. Let., 13 (10), pp. 1310-1324
  • Blomberg, S.P., Garland, T., Jr., Ives, A.R., Testing for phylogenetic signal in comparative data: Behavioral traits are more labile (2003) Evolution, 57 (4), pp. 717-745
  • Butler, M.A., King, A.A., Phylogenetic comparative analysis: A modeling approach for adaptive evolution (2004) Am. Nat., 164 (6), pp. 683-695
  • Felsenstein, J., Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters (1973) Syst. Zool., pp. 240-249
  • Kozak, K.H., Wiens, J.J., Accelerated rates of climatic-niche evolution underlie rapid species diversifcation (2010) Ecol. Let., 13 (11), pp. 1378-1389
  • Rabosky, D.L., Automatic detection of key innovations, rate shifs, and diversity-dependence on phylogenetic trees (2014) PLoS One., 9 (2), p. e89543
  • Rabosky, D.L., BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees (2014) Methods Ecol. Evol., 5 (7), pp. 701-707
  • Plummer, M., Best, N., Cowles, K., Vines, K., CODA: Convergence diagnosis and output analysis for MCMC (2006) R News., 6 (1), pp. 7-11
  • Goldberg, E.E., Lancaster, L.T., Ree, R.H., Phylogenetic inference of reciprocal efects between geographic range evolution and diversifcation (2011) Syst. Biol., 60 (4), pp. 451-465
  • Rolland, J., Condamine, F.L., Beeravolu, C.R., Jiguet, F., Morlon, H., Dispersal is a major driver of the latitudinal diversity gradient of Carnivora (2015) Global Ecol. Biogeogr., 24 (9), pp. 1059-1071
  • FitzJohn, R.G., Diversitree: Comparative phylogenetic analyses of diversifcation in R (2012) Methods Ecol. Evol., 3 (6), pp. 1084-1092
  • Boucot, A.J., Chen, X., Scotese, C.R., Phanerozoic paleoclimate: An atlas of lithologic indicators of climate (2013) Society of Economic Paleontologists and Mineralogists
  • Kozak, K.H., Wiens, J.J., Niche Conservatism Drives Elevational Diversity Patterns in Appalachian Salamanders (2010) Am. Nat., 176 (1), pp. 40-55
  • Nee, S., Birth-death models in macroevolution (2006) Annu. Rev. Ecol. Evol. Syst., 37, pp. 1-17
  • Ricklefs, R.E., Estimating diversifcation rates from phylogenetic information (2007) Trends Ecol. Evol., 22 (11), pp. 601-610
  • Losos, J.B., Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species (2008) Ecology Letters, 11 (10), pp. 995-1003
  • Cooper, N., Jetz, W., Freckleton, R.P., Phylogenetic comparative approaches for studying niche conservatism (2010) Journal of Evolutionary Biology., 23 (12), pp. 2529-2539
  • Almeida, E.A., Pie, M.R., Brady, S.G., Danforth, B.N., Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): Emerging patterns from the southern end of the world (2012) J. Biogeogr., 39 (3), pp. 526-544
  • Sarmiento, G., (1986) Ecological Features of Climate in High Tropical Mountains. High Altitude Tropical Biogeography, pp. 11-45. , Oxord University Press

Citas:

---------- APA ----------
Morinière, J., Van Dam, M.H., Hawlitschek, O., Bergsten, J., Michat, M.C., Hendrich, L., Ribera, I.,..., Balke, M. (2016) . Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Scientific Reports, 6.
http://dx.doi.org/10.1038/srep26340
---------- CHICAGO ----------
Morinière, J., Van Dam, M.H., Hawlitschek, O., Bergsten, J., Michat, M.C., Hendrich, L., et al. "Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods" . Scientific Reports 6 (2016).
http://dx.doi.org/10.1038/srep26340
---------- MLA ----------
Morinière, J., Van Dam, M.H., Hawlitschek, O., Bergsten, J., Michat, M.C., Hendrich, L., et al. "Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods" . Scientific Reports, vol. 6, 2016.
http://dx.doi.org/10.1038/srep26340
---------- VANCOUVER ----------
Morinière, J., Van Dam, M.H., Hawlitschek, O., Bergsten, J., Michat, M.C., Hendrich, L., et al. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Sci. Rep. 2016;6.
http://dx.doi.org/10.1038/srep26340