Artículo

Llorente, B.; De Souza, F.S.J.; Soto, G.; Meyer, C.; Alonso, G.D.; Flawiá, M.M.; Bravo-Almonacid, F.; Ayub, N.D.; Rodríguez-Concepción, M. "Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution" (2016) Scientific Reports. 6
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.

Registro:

Documento: Artículo
Título:Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution
Autor:Llorente, B.; De Souza, F.S.J.; Soto, G.; Meyer, C.; Alonso, G.D.; Flawiá, M.M.; Bravo-Almonacid, F.; Ayub, N.D.; Rodríguez-Concepción, M.
Filiación:Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular Dr. Hector Torres INGEBI, Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires, C1428ADN, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, B1876BXD, Argentina
Instituto de Genética Ewald A. Favret, Centro de Investigación en Ciencias Veterinarias y Agronómicas CICVyA, Instituto Nacional de Tecnología Agropecuaria INTA, Castelar, B1712WAA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1033AAJ, Argentina
Palabras clave:catechol oxidase; signal peptide; Arabidopsis; bacterium; cell nucleus; classification; cytology; enzymology; eukaryotic cell; evolution; fungus; gene expression; genetic selection; genetics; green alga; horizontal gene transfer; metabolism; molecular model; phylogeny; physiology; plant genome; plastid; prokaryotic cell; protein transport; symbiosis; Arabidopsis; Bacteria; Biological Evolution; Catechol Oxidase; Cell Nucleus; Chlorophyta; Eukaryotic Cells; Fungi; Gene Expression; Gene Transfer, Horizontal; Genome, Plant; Models, Molecular; Phylogeny; Plastids; Prokaryotic Cells; Protein Sorting Signals; Protein Transport; Selection, Genetic; Symbiosis
Año:2016
Volumen:6
DOI: http://dx.doi.org/10.1038/srep19036
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
CAS:catechol oxidase; Catechol Oxidase; Protein Sorting Signals
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v6_n_p_Llorente

Referencias:

  • Qiu, H., Assessing the bacterial contribution to the plastid proteome (2013) Trends Plant. Sci., 18, pp. 680-687
  • Suzuki, K., Miyagishima, S.Y., Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses (2010) Mol. Biol. Evol., 27, pp. 581-590
  • Price, D.C., Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants (2012) Science, 335, pp. 843-847
  • Hernandez-Romero, D., Solano, F., Sanchez-Amat, A., Polyphenol oxidase activity expression in Ralstonia solanacearum (2005) Appl. Environ. Microbiol., 71, pp. 6808-6815
  • Tran, L.T., Taylor, J.S., Constabel, C.P., The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion (2012) BMC Genomics, 13, p. 395
  • Wang, J., Constabel, C.P., Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria) (2004) Planta, 220, pp. 87-96
  • Bhonwong, A., Stout, M.J., Attajarusit, J., Tantasawat, P., Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua) (2009) J. Chem. Ecol., 35, pp. 28-38
  • Thipyapong, P., Hunt, M.D., Steffens, J.C., Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility (2004) Planta, 220, pp. 105-117
  • Claus, H., Decker, H., Bacterial tyrosinases (2006) Syst. Appl. Microbiol., 29, pp. 3-14
  • Malviya, N., Srivastava, M., Diwakar, S.K., Mishra, S.K., Insights to sequence information of polyphenol oxidase enzyme from different source organisms (2011) Appl. Biochem. Biotechnol., 165, pp. 397-405
  • Marusek, C.M., Trobaugh, N.M., Flurkey, W.H., Inlow, J.K., Comparative analysis of polyphenol oxidase from plant and fungal species (2006) J. Inorg. Biochem., 100, pp. 108-123
  • Jaenicke, E., Decker, H., Functional changes in the family of type 3 copper proteins during evolution (2004) Chembiochem, 5, pp. 163-169
  • Marchler-Bauer, A., CDD: Conserved domains and protein three-dimensional structure (2013) Nucleic Acids Res., 41, pp. D348-D352
  • Rubinstein, C.V., Gerrienne, P., De La Puente, G.S., Astini, R.A., Steemans, P., Early middle ordovician evidence for land plants in Argentina (eastern Gondwana) (2010) New Phytol, 188, pp. 365-369
  • Roy, S.W., Gilbert, W., The evolution of spliceosomal Introns: Patterns, puzzles and progress (2006) Nat. Rev. Genet., 7, pp. 211-221
  • Stenoien, H.K., Compact genes are highly expressed in the moss physcomitrella patens (2007) J. Evol. Biol., 20, pp. 1223-1229
  • Schonknecht, G., Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote (2013) Science, 339, pp. 1207-1210
  • Gaucher, E.A., Govindarajan, S., Ganesh, O.K., Palaeotemperature trend for Precambrian life inferred from resurrected proteins (2008) Nature, 451, pp. 704-707
  • Kaçar, B., Gaucher, E.A., Experimental evolution of protein-protein interaction networks (2013) Biochem. J, 453, pp. 311-319
  • Llorente, B., Safety assessment of nonbrowning potatoes: Opening the discussion about the relevance of substantial equivalence on next generation biotech crops (2011) Plant Biotechnol. J, 9, pp. 136-150
  • Emanuelsson, O., Nielsen, H., Von Heijne, G., Chloro, P., A neural network-based method for predicting chloroplast transit peptides and their cleavage sites (1999) Protein. Sci., 8, pp. 978-984
  • Sullivan, M.L., Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism (2014) Front. Plant Sci., 5, p. 783
  • Hu, T.T., The arabidopsis lyrata genome sequence and the basis of rapid genome size change (2011) Nat. Genet., 43, pp. 476-481
  • Parfrey, L.W., Lahr, D.J., Knoll, A.H., Katz, L.A., Estimating the timing of early eukaryotic diversification with multigene molecular clocks (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 13624-13629
  • Emiliani, G., Fondi, M., Fani, R., Gribaldo, S., A horizontal gene transfer at the origin of phenylpropanoid metabolism: A key adaptation of plants to land (2009) Biol. Direct, 4, p. 7
  • Sheppard, A.E., Timmis, J.N., Instability of plastid DNA in the nuclear genome (2009) PLOS Genet., 5
  • Stegemann, S., Bock, R., Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus (2006) Plant Cell, 18, pp. 2869-2878
  • Bock, R., Timmis, J.N., Reconstructing evolution: Gene transfer from plastids to the nucleus (2008) Bioessays, 30, pp. 556-566
  • Dyall, S.D., Brown, M.T., Johnson, P.J., Ancient invasions: From endosymbionts to organelles (2004) Science, 304, pp. 253-257
  • Burki, F., Hirakawa, Y., Keeling, P.J., Intragenomic spread of plastid-targeting presequences in the coccolithophore Emiliania huxleyi (2012) Mol. Biol. Evol., 29, pp. 2109-2112
  • Tonkin, C.J., Evolution of malaria parasite plastid targeting sequences (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 4781-4785
  • Corbin, D.R., Grebenok, R.J., Ohnmeiss, T.E., Greenplate, J.T., Purcell, J.P., Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants (2001) Plant Physiol., 126, pp. 1116-1128
  • Nawrath, C., Poirier, Y., Somerville, C., Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of arabidopsis thaliana results in high levels of polymer accumulation (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 12760-12764
  • Poirier, Y., Dennis, D.E., Klomparens, K., Somerville, C.P., A biodegradable thermoplastic, produced in transgenic plants (1992) Science, 256, pp. 520-523
  • Lee, S.B., Accumulation of trehalose within transgenic chloroplasts confers drought tolerance (2003) Mol. Breed., 11, pp. 1-13
  • Baudisch, B., Langner, U., Garz, I., Klosgen, R.B., The exception proves the rule? Dual targeting of nuclear-encoded proteins into endosymbiotic organelles (2014) New Phytol, 201, pp. 80-90
  • Peeters, N., Small, I., Dual targeting to mitochondria and chloroplasts (2001) Biochim. Biophys. Acta, 1541, pp. 54-63
  • Gray, M.W., Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria (2015) Proc. Natl. Acad. Sci. USA
  • Altschul, S.F., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res., 25, pp. 3389-3402
  • Finn, R.D., Clements, J., Eddy, S.R., HMMER web server: Interactive sequence similarity searching (2011) Nucleic Acids Res., 39, pp. W29-W37
  • Larkin, M.A., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948
  • Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J., Jalview Version 2 - A multiple sequence alignment editor and analysis workbench (2009) Bioinformatics, 25, pp. 1189-1191
  • Le, S.Q., Gascuel, O., An improved general amino acid replacement matrix (2008) Mol. Biol. Evol., 25, pp. 1307-1320
  • Jones, D.T., Taylor, W.R., Thornton, J.M., The rapid generation of mutation data matrices from protein sequences (1992) Comput. Appl. Biosci, 8, pp. 275-282
  • Henikoff, S., Henikoff, J.G., Amino acid substitution matrices from protein blocks (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 10915-10919
  • Guindon, S., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Syst. Biol., 59, pp. 307-321
  • Guindon, S., Gascuel, O., A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood (2003) Syst. Biol., 52, pp. 696-704
  • Chevenet, F., Brun, C., Banuls, A.L., Jacq, B., Christen, R., TreeDyn: Towards dynamic graphics and annotations for analyses of trees (2006) BMC Bioinformatics, 7, p. 439
  • Banks, J.A., The Selaginella genome identifies genetic changes associated with the evolution of vascular plants (2011) Science, 332, pp. 960-963
  • Spiegel, F.W., Contemplating the first Plantae (2012) Science, 335, pp. 809-810
  • Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H., CDART: protein homology by domain architecture (2002) Genome Res., 12, pp. 1619-1623
  • Kelley, L.A., Sternberg, M.J., Protein structure prediction on the Web: A case study using the Phyre server (2009) Nat. Protoc., 4, pp. 363-371
  • Nakagawa, T., Improved gateway binary vectors: High-performance vectors for creation of fusion constructs in transgenic analysis of plants (2007) Biosci. Biotechnol. Biochem., 71, pp. 2095-2100
  • Yu, X.H., Liu, C.J., Development of an analytical method for genome-wide functional identification of plant acyl-coenzyme A-dependent Acyltransferases (2006) Anal. Biochem., 358, pp. 146-148
  • Karimi, M., Inze, D., Depicker, A., GATEWAY vectors for Agrobacterium-mediated plant transformation (2002) Trends Plant Sci., 7, pp. 193-195
  • Sparkes, I.A., Runions, J., Kearns, A., Hawes, C.R., Transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants (2006) Nat. Protoc., 1, pp. 2019-2025
  • Bechtold, N., Pelletier, G., Planta agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum Infiltration (1998) Methods Mol. Biol., 82, pp. 259-266
  • Cubo, M.T., Buendia-Claveria, A.M., Beringer, J.E., Ruiz-Sainz, J.E., Melanin production by Rhizobium strains (1988) Appl. Environ. Microbiol., 54, pp. 1812-1817
  • Simon, P., Q-Gene: Processing quantitative real-time RT-PCR data (2003) Bioinformatics, 19, pp. 1439-1440
  • Sun, Y., Li, H., Huang, J.R., Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts (2012) Mol. Plant, 5, pp. 387-400

Citas:

---------- APA ----------
Llorente, B., De Souza, F.S.J., Soto, G., Meyer, C., Alonso, G.D., Flawiá, M.M., Bravo-Almonacid, F.,..., Rodríguez-Concepción, M. (2016) . Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution. Scientific Reports, 6.
http://dx.doi.org/10.1038/srep19036
---------- CHICAGO ----------
Llorente, B., De Souza, F.S.J., Soto, G., Meyer, C., Alonso, G.D., Flawiá, M.M., et al. "Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution" . Scientific Reports 6 (2016).
http://dx.doi.org/10.1038/srep19036
---------- MLA ----------
Llorente, B., De Souza, F.S.J., Soto, G., Meyer, C., Alonso, G.D., Flawiá, M.M., et al. "Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution" . Scientific Reports, vol. 6, 2016.
http://dx.doi.org/10.1038/srep19036
---------- VANCOUVER ----------
Llorente, B., De Souza, F.S.J., Soto, G., Meyer, C., Alonso, G.D., Flawiá, M.M., et al. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution. Sci. Rep. 2016;6.
http://dx.doi.org/10.1038/srep19036