Artículo

Fuentes, V.; Alurralde, G.; Meyer, B.; Aguirre, G.E.; Canepa, A.; Wölfl, A.-C.; Hass, H.C.; Williams, G.N.; Schloss, I.R. "Glacial melting: An overlooked threat to Antarctic krill" (2016) Scientific Reports. 6
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Strandings of marine animals are relatively common in marine systems. However, the underlying mechanisms are poorly understood. We observed mass strandings of krill in Antarctica that appeared to be linked to the presence of glacial meltwater. Climate-induced glacial meltwater leads to an increased occurrence of suspended particles in the sea, which is known to affect the physiology of aquatic organisms. Here, we study the effect of suspended inorganic particles on krill in relation to krill mortality events observed in Potter Cove, Antarctica, between 2003 and 2012. The experimental results showed that large quantities of lithogenic particles affected krill feeding, absorption capacity and performance after only 24 h of exposure. Negative effects were related to both the threshold concentrations and the size of the suspended particles. Analysis of the stomach contents of stranded krill showed large quantities of large particles (> 106 μm3), which were most likely mobilized by glacial meltwater. Ongoing climate-induced glacial melting may impact the coastal ecosystems of Antarctica that rely on krill.

Registro:

Documento: Artículo
Título:Glacial melting: An overlooked threat to Antarctic krill
Autor:Fuentes, V.; Alurralde, G.; Meyer, B.; Aguirre, G.E.; Canepa, A.; Wölfl, A.-C.; Hass, H.C.; Williams, G.N.; Schloss, I.R.
Filiación:Instituto de Ciencias del Mar (CSIC), Barcelona, Spain
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
School of Marine Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Research Station, List, Germany
Centro para el Estudio de Sistemas Marinos, Puerto Madryn, Chubut, Argentina
Instituto Antártico Argentino, Buenos Aires, Argentina
Institut des Sciences de la mer de Rimouski, Rimouski, QC, Canada
Palabras clave:Antarctica; aquatic species; coastal waters; deglaciation; Euphausia superba; experimental model; exposure; feeding; mortality; physiology; stomach content
Año:2016
Volumen:6
DOI: http://dx.doi.org/10.1038/srep27234
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v6_n_p_Fuentes

Referencias:

  • Pakhomov, E.A., Fuentes, V., Schloss, I.R., Atencio, A., Esnal, G.B., Beaching of the tunicate Salpa thompsoni at high levels of suspended particulate matter in the Southern Ocean (2003) Polar Biol., 26, pp. 427-431
  • Schloss, I.R., Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica) (2012) J Mar. Syst., 92, pp. 53-66
  • Rückamp, M., Braun, M., Suckro, S., Blindow, N., Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade (2011) Global Planet. Change., 79, pp. 99-109
  • Simões, J.C., Dani, N., Bremer, U.F., Aquino, F.E., Neto, J.A., Small cirque glaciers retreat on Keller Peninsula, Admiralty Bay, King George Island, Antarctica (2004) Pesqui. Antart. Bras., 4, pp. 49-56
  • Klöser, H., Hydrography of Potter Cove, a small Fjord-like Inlet on King George Island (South Shetlands) (1994) Estuar. Coast Shelf S, 38, pp. 523-537
  • Wölfl, A.C., Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates-Potter Cove, King George Island, Antarctica (2014) Geo-Marine Letters, 34, pp. 435-446
  • Monien, P., A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica) (2011) Antarct. Sci., 23, pp. 255-267
  • Thrush, S.F., Muddy waters: Elevating sediment input to coastal and estuarine habitats (2004) Front. Ecol. Environ., 2, pp. 299-306. , (2004)
  • Gutt, J., The Southern Ocean ecosystem under multiple climate change stresses - An integrated circumpolar assessment (2015) Glob. Change Biol., 21, pp. 1434-1453
  • Philipps, E.E.R., Husmann, G., Abele, D., The impact of sediment deposition and iceberg scour on the Antarctic soft shell clam Laternula elliptica at King George Island, Antarctica (2011) Antarct. Sci., 23, pp. 127-138
  • Torre, L., Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations (2012) Polar Biol., 35, pp. 1743-1748
  • Arendt, K.E., Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord (2011) J. Plankton Res., 33, pp. 1526-1537
  • Carrasco, N.K., Perissinotto, R., Jones, S., Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell and Grindley, 1974) in the St Lucia Estuary, South Africa (2013) J. Exp. Mar. Biol. Ecol., 446, pp. 45-51
  • Wenger, A.S., Johansen, J.L., Jones, G.P., Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish (2012) J. Exp. Mar. Biol. Ecol., 428, pp. 43-48
  • Meyer, B., The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective (2012) Polar Biol., 35, pp. 15-37
  • Gleiber, M.R., Steinberg, D.K., Ducklow, H.W., Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula (2012) Mar. Ecol. Prog. Ser., 471, pp. 23-36
  • Atkinson, A., Siegel, V., Pakhomov, E., Rothery, P., Longterm decline in krill stock and increase in salps within the Southern Ocean (2004) Nature, 432, pp. 100-103
  • Flores, H., Impact of climate change on Antarctic krill (2012) Mar. Ecol. Prog. Ser., 458, pp. 1-19
  • Warren, J.D., Demer, D.A., Abundance and distribution of Antarctic krill (Euphausia superba) nearshore of Cape Shirreff, Livingston Island, Antarctica, during six austral summers between 2000 and 2007 (2010) Can. J. Fish. Aquat. Sci., 67, pp. 1159-1170
  • Barrera-Oro, E.R., Casaux, R.J., Feeding selectivity in Nothotenia neglecta, Nybelin, from Potter Cove, South Shetland Islands, Antarctica (1990) Antarct. Sci., 2, pp. 207-2013
  • Fanta, E., SantÁnna Rios, F., Donatti, L., Cardoso, W.E., Spatial and temporal variation in krill consumption by the Antarctic fish Notothenia coriiceps, in Admiralty Bay, King George Island (2003) Antarct. Sci., 15, pp. 458-462
  • Nowacek, D.P., Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula (2011) PLoS One.
  • Steinberg, D.K., Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula (2015) Deep-Sea Res. I, 101, pp. 54-70
  • Fey, S.B., Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events (2015) Proc. Nac. Acad. Sci.
  • Ullrich, B., Storch, V., Marschall, H.P., Microscopic anatomy, functional morphology, and ultrastructure of the stomach of Euphausia superba Dana (Crustacea, Euphausiacea) (1991) Polar Biol., 11, pp. 203-211
  • Schmidt, K., Seabed foraging by Antarctic krill: Implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron (2011) Limnol. Oceanogr., 56, pp. 1411-1428
  • McClatchie, S., Boyd, C.M., Morphological study of sieve efficiencies and mandibular surfaces in the Antarctic krill, Euphausia superba (1983) Can. J. Fish. Aquat. Sci., 40, pp. 955-967
  • Suh, H.L., The gastric mill of euphausiid crustaceans: A comparison of eleven species (1996) Hydrobiologia, 321, pp. 235-244
  • Suh, H.L., Toda, T., Morphology of the gastric mill of the genus Euphausia (Crustacea, Euphausiacea) (1992) Bull. Plankton Soc. Japan., 39, pp. 17-24
  • Cook, A.J., Fox, A.J., Vaughan, D.G., Ferrigno, J.G., Retreating glacier fronts on the antarctic peninsula over the past half-century (2005) Science, 308, pp. 541-544
  • Park, B.K., Chang, S.K., Yoon, H.I., Chung, H., Recent retreat of ice cliffs, King George Island, South Shetland Islands, Antarctic Peninsula (1998) Ann. Glaciol., 27, pp. 633-635
  • Vogt, S., Braun, M., Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data (2004) Pesquisa Ant. Brasil., 4, pp. 105-118
  • Lund-Hansen, L.C., Andersen, T.J., Nielsen, M.H., Pejrup, M., Suspended matter, Chl-A, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer (2010) Estuar. Coasts., 33, pp. 1442-1451
  • Hernando, M., Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition (2015) J. Exp. Mar. Biol. Ecol., 466, pp. 110-119
  • Eiane, K., Daase, M., Observations of mass mortality of Themisto libellula (Amphipoda, Hyperidae) (2002) Polar Biol., 25, pp. 396-398
  • Aarset, A.V., Torres, J.J., Cold resistance and metabolic responses to salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia superba (1989) Polar Biol., 9 (8), pp. 491-497
  • Tremblay, N., Abele, D., Response of three krill species to hypoxia and warming: An experimental approach to oxygen minimum zones expansion in coastal ecosystems (2015) Mar. Biol.
  • Wȩsławski, J.M., Legezyńska, J., Glaciers caused zooplankton mortality? (1998) J. Plankton Res., 20, pp. 1233-1240
  • Sokolova, M.N., Euphausiid "dead body rain" as a source of food for abyssal benthos (1994) Deep-Sea Res. I, 41 (4), pp. 41-746
  • Zhang, J., Modeling the impact of wind intensification on Antarctic sea ice volume (2013) J. Clim., 27, pp. 202-214
  • Ducklow, H.W., Marine pelagic ecosystems: The West Antarctic Peninsula (2007) Philos. T. Royal Soc. B, 362, pp. 67-94
  • Atkinson, A., Oceanic circumpolar habitats of Antarctic krill (2008) Mar. Ecol. Prog. Ser., 362, pp. 1-23
  • Hofmann, E.E., Lascara, C.M., Modeling the growth dynamics of Antarctic krill Euphausia superba (2000) Mar. Ecol. Prog. Ser., 194, pp. 219-231
  • Ross, R.M., Palmer LTER: Patterns of distribution of five dominant zooplankton species in the epi-pelagic zone west of the Antarctic Peninsula, 1993-2004 (2008) Deep-Sea Res. II, (55), pp. 2086-2105
  • Bernard, K.S., Steinberg, D.K., Schofield, O.M.E., Summertime grazing impact of the dominant macrozooplankton off the western Antarctic Peninsula (2012) Deep-Sea Res. I, 62, pp. 111-122
  • Schnack-Schiel, S.B., Isla, E., The role of zooplankton in the pelagic-benthic coupling of the Southern Ocean (2005) Sci. Mar., 69, pp. 39-55
  • Juáres, M.A., Adélie penguin population changes at Stranger Point: 19 years of monitoring (2015) Antar. Sci., 27, pp. 455-461
  • Atkinson, A., Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage (2006) Limnol. Oceanogr., 51, pp. 973-987
  • Kawaguchi, S., Risk maps for Antarctic krill under projected Southern Ocean acidification (2013) Nat. Clim. Change., 3, pp. 843-847
  • Strickland, J.D.H., Parsons, D.R., A practical handbook of seawater analysis (1972) Bull. Fish. Res. Board Can., 167, pp. 1-310
  • Breheny, P., Burchett, W., (2015) Visreg: Visualization of Regression Models, , http://CRAN.Rproject.org/package=visreg, R package version 2.2-0. [Accessed on February 25 2016]
  • Mueller, J.L., (2000) SeaWiFS Algorithm for the Diffuse Attenuation Coefficient, K(490), Using Water-leaving Radiances at 490 and 555 Nm in SeaWiFS Postlaunch Calibration and Validation Analyses: Part 3, 11, pp. 24-27. , NASA Tech. Memo. 2000-206892, (eds Hooker, S. B., Firestone, E. R.) (NASA Goddard Space Flight Center, Greenbelt, Maryland)
  • Meyer, B., Atkinson, A., Blume, B., Bathmann, U.V., Feeding and energy budgets of larval Antarctic krill Euphausia superba in summer (2003) Mar. Ecol. Prog. Ser., 267, pp. 167-177
  • Båmstedt, U., (2000) ICES Zooplankton Methodology Manual, pp. 297-399. , (eds Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., Huntley, M.) (Academic Press)
  • Quinn, G.P., Keough, M.J., Potential effect of enclosure size on field experiments with herbivorous intertidal gastropods (1993) Mar. Ecol. Prog. Ser., 98, pp. 199-201
  • (2014) R: A Language and Environment for Statistical Computing, , http://www.R-project.org/, R Foundation for Statistical Computing, Vienna, Austria
  • Conover, R.J., Assimilation of organic matter by zooplankton (1966) Limnol. Oceanogr., 11, pp. 338-354
  • Mahibbur, R.M., Govindarajulu, Z.A., Modification of the test of Shapiro and Wilks for normality (1997) J. Appl. Statist., 24, pp. 219-235
  • Montgomery, D.C., Diseño y Análisis de Experimentos (1991) Grupo Editorial Iberoamérica, 585p
  • Miller, R.G., Jr., (1981) Simultaneous Statistical Inference, , New York Springer-Verlag
  • Di Rienzo, J.A., (2014) InfoStat Versión 2014, , http://www.infostat.com.ar, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina
  • Hammer, O., Harper, D.A.T., Ryan, P.D., PAST-palaeontological statistics, ver. 1.89 (2001) Palaeont. Electr., 4, pp. 1-9
  • Fry, J.C., Davies, A.R., An assessment of methods for measuring volumes of planktonic bacteria, with particular reference to television image analysis (1985) J. Appl. Microbiol., 58, pp. 105-112
  • Kang, S.H., Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea (2001) J. Plankton Res., 23, pp. 333-352
  • Von Harbou, L., Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics (2011) Mar. Biol., 158, pp. 2009-2026

Citas:

---------- APA ----------
Fuentes, V., Alurralde, G., Meyer, B., Aguirre, G.E., Canepa, A., Wölfl, A.-C., Hass, H.C.,..., Schloss, I.R. (2016) . Glacial melting: An overlooked threat to Antarctic krill. Scientific Reports, 6.
http://dx.doi.org/10.1038/srep27234
---------- CHICAGO ----------
Fuentes, V., Alurralde, G., Meyer, B., Aguirre, G.E., Canepa, A., Wölfl, A.-C., et al. "Glacial melting: An overlooked threat to Antarctic krill" . Scientific Reports 6 (2016).
http://dx.doi.org/10.1038/srep27234
---------- MLA ----------
Fuentes, V., Alurralde, G., Meyer, B., Aguirre, G.E., Canepa, A., Wölfl, A.-C., et al. "Glacial melting: An overlooked threat to Antarctic krill" . Scientific Reports, vol. 6, 2016.
http://dx.doi.org/10.1038/srep27234
---------- VANCOUVER ----------
Fuentes, V., Alurralde, G., Meyer, B., Aguirre, G.E., Canepa, A., Wölfl, A.-C., et al. Glacial melting: An overlooked threat to Antarctic krill. Sci. Rep. 2016;6.
http://dx.doi.org/10.1038/srep27234