Artículo

Mai, V.H.; Moradpour, A.; Senzier, P.A.; Pasquier, C.; Wang, K.; Rozenberg, M.J.; Giapintzakis, J.; Mihailescu, C.N.; Orfanidou, C.M.; Svoukis, E.; Breza, A.; Lioutas, C.B.; Franger, S.; Revcolevschi, A.; Maroutian, T.; Lecoeur, P.; Aubert, P.; Agnus, G. (...) Schneegans, O. "Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery" (2015) Scientific Reports. 5
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of LixCoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.

Registro:

Documento: Artículo
Título:Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery
Autor:Mai, V.H.; Moradpour, A.; Senzier, P.A.; Pasquier, C.; Wang, K.; Rozenberg, M.J.; Giapintzakis, J.; Mihailescu, C.N.; Orfanidou, C.M.; Svoukis, E.; Breza, A.; Lioutas, C.B.; Franger, S.; Revcolevschi, A.; Maroutian, T.; Lecoeur, P.; Aubert, P.; Agnus, G.; Salot, R.; Albouy, P.A.; Weil, R.; Alamarguy, D.; March, K.; Jomard, F.; Chrétien, P.; Schneegans, O.
Filiación:Laboratoire de GénieÉlectrique de Paris, CNRS-UMR 8507, Universités UPMC et Paris-Sud, Supélec, Gif-sur-Yvette, F-91192, France
Institut d'Électronique Fondamentale, CNRS-UMR 8622, Université Paris-Sud, Orsay, 91405, France
Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud, Orsay, F-91405, France
Departamento de Física Juan José Giambiagi, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Nanotechnology Research Center, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus
Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
Laboratoire de Physico-Chimie de l'Etat Solide, CNRS-UMR 8182, Université Paris-Sud, Orsay, F-91405, France
Liten-CEA de Grenoble, Grenoble, F-38054, France
Groupe d'Etude de la Matière Condensée, CNRS-UMR 8635, Université de Versailles Saint-Quentin-En-Yvelines, Versailles, F-78035, France
Año:2015
Volumen:5
DOI: http://dx.doi.org/10.1038/srep07761
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v5_n_p_Mai

Referencias:

  • Waser, R., Aono, M., Nanoionics-based resistive switching memories (2007) Nature Mater., 6, pp. 833-840
  • Sawa, A., Resistive switching in transition metal oxides (2008) Mater. Today, 11, pp. 28-36
  • Ha, S.D., Ramanathan, S., Adaptative oxide electronics: A review (2011) J. Applied Phys., 110, p. 071101
  • Waser, R., Dittmann, R., Staikov, G., Szot, K., Redox-based resistive switching memories- nanoionic mechanism, prospects and challenges (2009) Adv. Mater., 21, pp. 2632-2663
  • Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., The missing memristor found (2008) Nature, 453, pp. 80-83
  • Rozenberg, M.J., Resistive switching (2011) Scholarpedia, 6, p. 11414
  • Snider, G.S., Spike-timing-dependent learning in memristive nanodevices (2008) Paper Presented at IEEE International Symposium on Nanoscale Architectures, , Anaheim, USA, Publisher:IEEE 12-13 June
  • Jo, S.-H., Nanoscale memristor device as synapse in neuromorphic systems (2010) Nano Lett., 19, pp. 1297-1301
  • Ohno, T., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses (2011) Nature Mater., 10, pp. 591-595
  • Ziegler, M., An electronic version of Pavlov's dog (2012) Adv. Funct. Mater., 22, pp. 2744-2749
  • Shi, J., Ha, S.D., Zhou, Y., Schoofs, F., Ramanathan, S., A correlated nickelate synaptic transistor (2013) Nature Commun., 4, p. 2676
  • Seo, K., Analog memory and spike-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device (2011) Nanotechnol., 22, p. 245023
  • Chang, T., Jo, S.-H., Lu, W., Short-term memoryto long-term memory transition in a nanoscale memristor (2011) ACS Nano, 9, pp. 7669-7676
  • Kuzum, D., Jeyasingh, G.D., Lee, B., Philip Wong, H.S., Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing (2012) Nano Lett., 12, pp. 2179-2186
  • Moradpour, A., Resistive switching phenomena in LixCoO2 thin films (2011) Adv. Mater., 23, pp. 4141-4145
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., (2008) Molecular Biology of the Cell, , Garland Science
  • Markram, H., Gupta, A., Uziel, A., Wang, Y., Tsodyks, M., Information processing with frequency-dependent synaptic connections (1998) Neurobiology of Learning and Memory, 70, pp. 101-112
  • Valov, I., Nanobatteries in redox-based resistive switches require extension of memristor theory (2013) Nature Commun., 4, p. 1771
  • Ghenzy, N., Optimization of resistive switching performance of metal-manganite oxide interfaces by multipulse protocol (2012) J. Applied Phys., 111, p. 084512
  • Dittmann, R., Scaling potential of local redox processes in memristive SrTiO3 thin film devices (2012) Proc. IEEE, 100, pp. 1979-1990
  • Huang, C.H., Manipulated tranformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate (2013) ACS Appl. Mater. Interfaces, 5, pp. 6017-6023
  • Zhu, X., Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins (2013) Sci. Rep., 3, p. 1084
  • Ariel, N., Ceder, G., Sadoway, D.R., Fitzgerald, E.A., Electrochemically control transport of lithium through ultrathin SiO2 (2005) J. Appl. Phys., 98, p. 023516
  • Tappertzhofen, S., Generic relevance of counter charges for cation-based nanoscale resistive switching memories (2013) ACS Nano, 7, p. 6396
  • Motohaschi, T., Electronic phase diagram of the layered cobalt oxide system LixCoO2 (0.0 # x # 1.0) (2009) Phys. Rev. B, 80, p. 165114
  • Ménétrier, M., Saadoune, I., Levasseur, S., Delmas, C., The insulator-metal transition upon lithium deintercalation from LiCoO2: Electronic properties and 7Li NMR study (1999) J. Mat. Chem., 9, pp. 1135-1140
  • Reimers, J.N., Dahn, J.R., Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2 (1992) J. Electrochem. Soc., 139, p. 2091
  • Lupi, S., A microscopic view on the Mott transition in chromium-doped V2O3 (2010) Nature Comm., 1, p. 105
  • Nishizawa, M., Yamamura, S., Itoh, T., Uchida, I., Irreversible conductivity change of Li1-xCoO2 on electrochemical lithium insertion/extraction, desirable for battery applications (1998) Chem. Commun., 16, pp. 1631-1632
  • Levasseur, S., Ménétrier, M., Suard, E., Delmas, C., Evidence for structural defects in non-stoichiometric HT-LiCoO2: Electrochemical, electronic properties and 7Li NMR studies (2000) Solid State Ionics, 128, pp. 11-24
  • Weeks, B.L., Vaughn, M.W., Deyoreo, J.J., Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy (2005) Langmuir, 21, pp. 8096-8098
  • Li, Y., Maynor, B.W., Liu, J., Electrochemical AFM ''Dip-Pen'' nanolithography (2001) J. Am. Chem. Soc., 123, pp. 2105-2106
  • Schneegans, O., NaxCoO2: A new opportunity for rewritable media? (2007) J. Am. Chem. Soc., 108, p. 9882
  • Lee, M.H., Hwang, C.S., Resistive switching memory: Observations with scanning probe microscopy (2011) Nanoscale, 3, pp. 490-502

Citas:

---------- APA ----------
Mai, V.H., Moradpour, A., Senzier, P.A., Pasquier, C., Wang, K., Rozenberg, M.J., Giapintzakis, J.,..., Schneegans, O. (2015) . Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery. Scientific Reports, 5.
http://dx.doi.org/10.1038/srep07761
---------- CHICAGO ----------
Mai, V.H., Moradpour, A., Senzier, P.A., Pasquier, C., Wang, K., Rozenberg, M.J., et al. "Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery" . Scientific Reports 5 (2015).
http://dx.doi.org/10.1038/srep07761
---------- MLA ----------
Mai, V.H., Moradpour, A., Senzier, P.A., Pasquier, C., Wang, K., Rozenberg, M.J., et al. "Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery" . Scientific Reports, vol. 5, 2015.
http://dx.doi.org/10.1038/srep07761
---------- VANCOUVER ----------
Mai, V.H., Moradpour, A., Senzier, P.A., Pasquier, C., Wang, K., Rozenberg, M.J., et al. Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery. Sci. Rep. 2015;5.
http://dx.doi.org/10.1038/srep07761