Artículo

Luisa Marin, M.; Hallett-Tapley, G.L.; Impellizzeri, S.; Fasciani, C.; Simoncelli, S.; Netto-Ferreira, J.C.; Scaiano, J.C. "Synthesis, acid properties and catalysis by niobium oxide nanostructured materials" (2014) Catalysis Science and Technology. 4(9):3044-3052
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Several forms of niobium oxide were prepared, including nanostructured mesoporous materials, and their acidity properties were comprehensively investigated and compared with commercially available materials. The composites were characterized by a variety of techniques, including XRD, TEM, N2 adsorption and Hammett acid indicator studies. The acidity of the niobium oxide derivatives was also investigated by the ability of the materials to successfully promote the halochromic ring-opening of an oxazine-coumarin probe that was specifically designed for use in fluorescence imaging studies. The ring-opening reaction was easily monitored using UV-visible, fluorescence and NMR spectroscopy. Single molecule microscopy was employed to gain a more in-depth understanding of the niobium oxide acid catalysis pathway. Using this technique, the rate of niobium oxide mediated protonation was estimated to be 1.8 × 10-13 mol m-2 s-1. Single molecule analysis was also used to obtain a detailed map of Brønsted acid sites on the niobium oxide surface. The active sites, located by multiple blinking events, do not seem to be localized on any area of the material, but rather randomly distributed throughout the solid state surface. As the reaction proceeds, the sites with the highest acidity and accessibility are gradually consumed, making the next tier of acid sites available for reaction. The phenomenon was more closely characterized by using time lapsed reactivity maps. © the Partner Organisations 2014.

Registro:

Documento: Artículo
Título:Synthesis, acid properties and catalysis by niobium oxide nanostructured materials
Autor:Luisa Marin, M.; Hallett-Tapley, G.L.; Impellizzeri, S.; Fasciani, C.; Simoncelli, S.; Netto-Ferreira, J.C.; Scaiano, J.C.
Filiación:Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada
Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain
INQUIMAE, Departamento de Química Inorgánica, Analítica, y Química Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Divisão de Metrologia Química, Instituto Nacional de Metrologia, Qualidade e Tecnologia-INMETRO, Duque de Caxias, 25250-020 Rio de Janeiro, Brazil
Palabras clave:Catalysis; Fluorescence; Mesoporous materials; Molecules; Nuclear magnetic resonance spectroscopy; Surface reactions; Synthesis (chemical); Acidity properties; Fluorescence imaging; In-depth understanding; Randomly distributed; Ring opening reaction; Single-molecule analysis; Single-molecule microscopy; Solid-state surface; Niobium oxide
Año:2014
Volumen:4
Número:9
Página de inicio:3044
Página de fin:3052
DOI: http://dx.doi.org/10.1039/c4cy00238e
Título revista:Catalysis Science and Technology
Título revista abreviado:Catal. Sci. Technolog.
ISSN:20444753
CODEN:CSTAG
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20444753_v4_n9_p3044_LuisaMarin

Referencias:

  • Nakajima, K., Baba, Y., Noma, R., Kitano, M., Kondo, J.N., Hayashi, S., Hara, M., (2011) J. Am. Chem. Soc., 133, pp. 4224-4227
  • Nowak, I., Ziolek, M., (1999) Chem. Rev., 99, pp. 3603-3624
  • Tanabe, K., Okazaki, S., (1995) Appl. Catal., A, 133, pp. 191-218
  • Armaroli, T., Busca, G., Carlini, C., Giuttari, M., Galletti, A.M.R., Sbrana, G., (2000) J. Mol. Catal. A: Chem., 151, pp. 233-243
  • Carlini, C., Giuttari, M., Galletti, A.M.R., Sbrana, G., Armaroli, T., Busca, G., (1999) Appl. Catal., A, 183, pp. 295-302
  • Nair, G.S., Adrijanto, E., Alsalme, A., Kozhevnikov, I.V., Cooke, D.J., Brown, D.R., Shiju, N.R., (2012) Catal. Sci. Technol., 2, pp. 1173-1179
  • Marzo, M., Gervasini, A., Carniti, P., (2012) Carbohydr. Res., 347, pp. 23-31
  • Ko, E.I., Weissman, J.G., (1990) Catal. Today, 8, pp. 27-36
  • Okazaki, S., Kurosaki, A., (1990) Catal. Today, 8, pp. 113-122
  • Okazaki, S., Wada, N., (1993) Catal. Today, 16, pp. 349-359
  • Ushikubo, T., Iizuka, I., Hattori, H., Tanabe, K., (1993) Catal. Today, 16, pp. 291-295
  • Deniz, E., Sortino, S., Raymo, F.M., (2010) J. Phys. Chem. Lett., 1, pp. 3506-3509
  • Uekawa, N., Kudo, T., Mori, F., Wu, Y.J., Kakegawa, K., (2003) J. Colloid Interface Sci., 264, pp. 378-384
  • Carrillo, A.I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., Alejandro Vidal-Moya, J., (2012) Microporous Mesoporous Mater., 151, pp. 380-389
  • Rao, Y., Trudeau, M., Antonelli, D., (2006) J. Am. Chem. Soc., 128, pp. 13996-13997
  • Yurdakoc, M., Akcay, M., Tonbul, Y., Yurdakoc, K., (1999) Turk. J. Chem., 23, pp. 319-327
  • Matsuzaki, I., Nitta, M., Tanabe, K., (1969) J. Res. Inst. Catal., Hokkaido Univ., 17, pp. 46-53
  • Meynen, V., Cool, P., Vansant, E.F., (2009) Microporous Mesoporous Mater., 125, pp. 170-223
  • Yurdakoc, M., Akcay, M., Tonbul, Y., Yurdakoc, K., (1999) Turk. J. Chem., 23, pp. 319-327
  • Tomasulo, M., Sortino, S., White, A.J.P., Raymo, F.M., (2005) J. Org. Chem., 70, pp. 8180-8189
  • Tomasulo, M., Sortino, S., Raymo, F.M., (2005) Org. Lett., 7, pp. 1109-1112
  • Petriella, M., Deniz, E., Swaminathan, S., Roberti, M.J., Raymo, F.M., Bossi, M.L., (2013) Photochem. Photobiol., 89, pp. 1391-1398
  • Swaminathan, S., Petriella, M., Deniz, E., Cusido, J., Baker, J.D., Bossi, M.L., Raymo, F.M., (2012) J. Phys. Chem. A, 116, pp. 9928-9923
  • Deniz, E., Tomasulo, M., Cusido, J., Yildiz, I., Petriella, M., Bossi, M.L., Salvatore, S., Raymo, F.M., (2012) J. Phys. Chem. C, 116, pp. 6058-6068
  • Corrent, S., Hahn, P., Pohlers, G., Connolly, T.J., Scaiano, J.C., Fornés, V., García, H., (1998) J. Phys. Chem. B, 102, pp. 5852-5858
  • Hallett-Tapley, G.L., Crites, C.O.L., Gonzalez-Bejar, M., McGilvray, K.L., Netto-Ferreira, J.C., Scaiano, J.C., (2011) J. Photochem. Photobiol., A, 224, pp. 8-15
  • Skoog, D.A., Holler, F.J., Nieman, T.A., (1998) Principles of Instrumental Analysis, , Harcourt Brace & Company, Orlando, FL, 5th edn
  • Fu, B., Curry, F.E., Weinbaum, S., (1995) Am. J. Physiol., 269, pp. H2124-H2140

Citas:

---------- APA ----------
Luisa Marin, M., Hallett-Tapley, G.L., Impellizzeri, S., Fasciani, C., Simoncelli, S., Netto-Ferreira, J.C. & Scaiano, J.C. (2014) . Synthesis, acid properties and catalysis by niobium oxide nanostructured materials. Catalysis Science and Technology, 4(9), 3044-3052.
http://dx.doi.org/10.1039/c4cy00238e
---------- CHICAGO ----------
Luisa Marin, M., Hallett-Tapley, G.L., Impellizzeri, S., Fasciani, C., Simoncelli, S., Netto-Ferreira, J.C., et al. "Synthesis, acid properties and catalysis by niobium oxide nanostructured materials" . Catalysis Science and Technology 4, no. 9 (2014) : 3044-3052.
http://dx.doi.org/10.1039/c4cy00238e
---------- MLA ----------
Luisa Marin, M., Hallett-Tapley, G.L., Impellizzeri, S., Fasciani, C., Simoncelli, S., Netto-Ferreira, J.C., et al. "Synthesis, acid properties and catalysis by niobium oxide nanostructured materials" . Catalysis Science and Technology, vol. 4, no. 9, 2014, pp. 3044-3052.
http://dx.doi.org/10.1039/c4cy00238e
---------- VANCOUVER ----------
Luisa Marin, M., Hallett-Tapley, G.L., Impellizzeri, S., Fasciani, C., Simoncelli, S., Netto-Ferreira, J.C., et al. Synthesis, acid properties and catalysis by niobium oxide nanostructured materials. Catal. Sci. Technolog. 2014;4(9):3044-3052.
http://dx.doi.org/10.1039/c4cy00238e