Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In magnetically accreting white dwarfs, the height above the white dwarf surface where the standing shock is formed is intimately related with the accretion rate and the white dwarf mass. However, it is difficult to measure. We obtained new data with NuSTAR and Swift that, together with archival Chandra data, allow us to constrain the height of the shock in the intermediate polar EX Hya. We conclude that the shock has to form at least at a distance of about one white dwarf radius from the surface in order to explain the weak Fe Kα 6.4 keV line, the absence of a reflection hump in the high-energy continuum, and the energy dependence of the white dwarf spin pulsed fraction. Additionally, the NuSTAR data allowed us to measure the true, uncontaminated hard X-ray (12-40 keV) flux, whose measurement was contaminated by the nearby galaxy cluster Abell 3528 in non-imaging X-ray instruments. © 2018. The American Astronomical Society. All rights reserved..

Registro:

Documento: Artículo
Título:Constraining the Accretion Geometry of the Intermediate Polar EX Hya Using NuSTAR, Swift, and Chandra Observations
Autor:Luna, G.J.M.; Mukai, K.; Orio, M.; Zemko, P.
Filiación:CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio, (IAFE), Av. Inte. Güiraldes 2620, Buenos Aires, C1428ZAA, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Universidad Nacional Arturo Jauretche, Av. Calchaquí 6200 F. Varela, Buenos Aires, Argentina
INAF - Osservatorio di Padova, vicolo dell Osservatorio 5, Padova, I-35122, Italy
CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States
Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53704, United States
Department of Physics and Astronomy, Universit'a di Padova, vicolo dell Osservatorio 3, Padova, I-35122, Italy
Palabras clave:novae, cataclysmic variables; radiation mechanisms: general; X-rays: individual (EX Hydrae)
Año:2018
Volumen:852
Número:1
DOI: http://dx.doi.org/10.3847/2041-8213/aaa28f
Título revista:Astrophysical Journal Letters
Título revista abreviado:Astrophys. J. Lett.
ISSN:20418205
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20418205_v852_n1_p_Luna

Referencias:

  • Aizu, K., (1973) PThPh, 49, p. 1184
  • Allan, A., Hellier, C., Beardmore, A.P., (1998) MNRAS, 295, p. 167
  • Anders, E., Grevesse, N., (1989) GeCoA, 53, p. 197
  • Belle, K.E., Howell, S.B., Sion, E.M., Long, K.S., Szkody, P., (2003) ApJ, 587 (1), p. 373
  • Buccheri, R., Bennett, K., Bignami, G.F., (1983) A&A, 128, p. 245
  • Echevarria, J., Ramirez-Torres, A., Michel, R., Hernandez Santisteban, J.V., (2016) MNRAS, 461, p. 1576
  • Gastaldello, F., Ettori, S., Molendi, S., (2003) A&A, 411, p. 21
  • George, I.M., Fabian, A.C., (1991) MNRAS, 249, p. 352
  • Hayashi, T., Kitaguchi, T., Ishida, M., (2018) MNRAS, 474, p. 1810
  • Hellier, C., Mason, K.O., Rosen, S.R., Cordova, F.A., (1987) MNRAS, 228, p. 463
  • Isakova, P.B., Zhilkin, A.G., Bisikalo, D.V., Semena, A.N., Revnivtsev, M.G., (2017) ARep, 61, p. 560
  • King, A.R., Lasota, J.P., (1991) ApJ, 378, p. 674
  • King, A.R., Wynn, G.A., (1999) MNRAS, 310, p. 203
  • Luna, G.J.M., Raymond, J.C., Brickhouse, N.S., (2010) ApJ, 711 (2), p. 1333
  • Luna, G.J.M., Raymond, J.C., Brickhouse, N.S., Mauche, C.W., Suleimanov, V., (2015) A&A, 578, p. 15
  • Mauche, C.W., Brickhouse, N.S., Hoogerwerf, R., (2009) IBVS, 5876
  • Mukai, K., (1999) ASP Conf. Ser. 157, Annapolis Workshop on Magnetic Cataclysmic Variables, p. 33. , Mukai K. ed C. Hellier and K. Mukai (San Francisco, CA: ASP)
  • Mukai, K., Kinkhabwala, A., Paterson, J.R., Kahn, S.M., Paerels, F., (2003) ApJL, 586, p. L77
  • Mukai, K., Rana, V., Bernardini, F., De Martino, D., (2015) ApJL, 807, p. L30
  • Norton, A.J., Butters, O.W., Parker, T.L., Wynn, G.A., (2008) ApJ, 672 (1), p. 524
  • Revnivtsev, M., Potter, S., Kniazev, A., (2011) MNRAS, 411, p. 1317
  • Semena, A.N., Revnivtsev, M.G., Buckley, D.A.H., (2014) MNRAS, 442, p. 1123
  • Siegel, N., Reinsch, K., Beuermann, K., Wolff, E., Van Der Woerd, H., (1989) A&A, 225, p. 97
  • Suleimanov, V., Doroshenko, V., Ducci, L., Zhukov, G.V., Werner, K., (2016) A&A, 591, p. 35
  • Suleimanov, V., Revnivtsev, M., Ritter, H., (2005) A&A, 435, p. 191
  • Warner, B., (1972) MNRAS, 158, p. 425
  • Yuasa, T., Nakazawa, K., Makishima, K., (2010) A&A, 520, p. 25

Citas:

---------- APA ----------
Luna, G.J.M., Mukai, K., Orio, M. & Zemko, P. (2018) . Constraining the Accretion Geometry of the Intermediate Polar EX Hya Using NuSTAR, Swift, and Chandra Observations. Astrophysical Journal Letters, 852(1).
http://dx.doi.org/10.3847/2041-8213/aaa28f
---------- CHICAGO ----------
Luna, G.J.M., Mukai, K., Orio, M., Zemko, P. "Constraining the Accretion Geometry of the Intermediate Polar EX Hya Using NuSTAR, Swift, and Chandra Observations" . Astrophysical Journal Letters 852, no. 1 (2018).
http://dx.doi.org/10.3847/2041-8213/aaa28f
---------- MLA ----------
Luna, G.J.M., Mukai, K., Orio, M., Zemko, P. "Constraining the Accretion Geometry of the Intermediate Polar EX Hya Using NuSTAR, Swift, and Chandra Observations" . Astrophysical Journal Letters, vol. 852, no. 1, 2018.
http://dx.doi.org/10.3847/2041-8213/aaa28f
---------- VANCOUVER ----------
Luna, G.J.M., Mukai, K., Orio, M., Zemko, P. Constraining the Accretion Geometry of the Intermediate Polar EX Hya Using NuSTAR, Swift, and Chandra Observations. Astrophys. J. Lett. 2018;852(1).
http://dx.doi.org/10.3847/2041-8213/aaa28f