Artículo

Espinoza-Cara, A.; Zitare, U.; Alvarez-Paggi, D.; Klinke, S.; Otero, L.H.; Murgida, D.H.; Vila, A.J. "Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis" (2018) Chemical Science. 9(32):6692-6702
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and CuA sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a CuA scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature. © The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis
Autor:Espinoza-Cara, A.; Zitare, U.; Alvarez-Paggi, D.; Klinke, S.; Otero, L.H.; Murgida, D.H.; Vila, A.J.
Filiación:Instituto de Biología Molecular y Celular de Rosario (IBR CONICET-UNR), Rosario, Argentina
Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
Palabras clave:Binding sites; Electron transitions; Electronic structure; Hydrogen bonds; Ligands; Mutagenesis; Proteins; Scaffolds (biology); Directed mutagenesis; Electron transfer; Exogenous ligands; Functional features; Hydrogen bond networks; Natural proteins; Reduction potential; Strong interaction; Copper
Año:2018
Volumen:9
Número:32
Página de inicio:6692
Página de fin:6702
DOI: http://dx.doi.org/10.1039/c8sc01444b
Título revista:Chemical Science
Título revista abreviado:Chem. Sci.
ISSN:20416520
CODEN:CSHCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20416520_v9_n32_p6692_EspinozaCara

Referencias:

  • Scott, R.A., (2011) Encyclopedia of Inorganic and Bioinorganic Chemistry, , ed., John Wiley & Sons, Ltd, Chichester, UK
  • Holm, R.H., Kennepohl, P., Solomon, E.I., (1996) Chem. Rev., 96, pp. 2239-2314
  • Solomon, E.I., Heppner, D.E., Johnston, E.M., Ginsbach, J.W., Cirera, J., Qayyum, M., Kieber-Emmons, M.T., Tian, L., (2014) Chem. Rev., 114, pp. 3659-3853
  • Liu, J., Chakraborty, S., Hosseinzadeh, P., Yu, Y., Tian, S., Petrik, I., Bhagi, A., Lu, Y., (2014) Chem. Rev., 114, pp. 4366-4469
  • Solomon, E.I., (2006) Inorg. Chem., 45, pp. 8012-8025
  • Solomon, E.I., Baldwin, M.J., Lowery, M.D., (1992) Chem. Rev., 92, pp. 521-542
  • Solomon, E.I., Szilagyi, R.K., Debeer George, S., Basumallick, L., (2004) Chem. Rev., 104, pp. 419-458
  • Dennison, C., (2005) Coord. Chem. Rev., 249, pp. 3025-3054
  • Lacroix, L.B., Randall, D.W., Nersissian, A.M., Hoitink, C.W.G., Canters, G.W., Valentine, J.S., Solomon, E.I., (1998) J. Am. Chem. Soc., 120, pp. 9621-9631
  • Comba, P., (2000) Coord. Chem. Rev., 200-202, pp. 217-245
  • Lacroix, L.B., Shadle, S.E., Wang, Y., Averill, B.A., Hedman, B., Hodgson, K.O., Solomon, E.I., (1996) J. Am. Chem. Soc., 118, pp. 7755-7768
  • Lu, Y., Berry, S.M., Pfister, T.D., (2001) Chem. Rev., 101, pp. 3047-3080
  • Dennison, C., (2008) Nat. Prod. Rep., 25, pp. 15-24
  • Van Der Oost, J., Lappalainen, P., Musacchio, A., Warne, A., Lemieux, L., Rumbley, J., Gennis, R.B., Saraste, M., (1992) EMBO J., 11, pp. 3209-3217
  • Petrik, I.D., Liu, J., Lu, Y., (2014) Curr. Opin. Chem. Biol., 19, pp. 67-75
  • Lu, Y., (2006) Angew. Chem., Int. Ed. Engl., 45, pp. 5588-5601
  • Zastrow, M.L., Pecoraro, V.L., (2013) Coord. Chem. Rev., 257, pp. 2565-2588
  • Yu, F., Cangelosi, V.M., Zastrow, M.L., Tegoni, M., Plegaria, J.S., Tebo, A.G., Mocny, C.S., Pecoraro, V.L., (2014) Chem. Rev., 114, pp. 3495-3578
  • Mocny, C.S., Pecoraro, V.L., (2015) Acc. Chem. Res., 48, pp. 2388-2396
  • Schwizer, F., Okamoto, Y., Heinisch, T., Gu, Y., Pellizzoni, M.M., Lebrun, V., Reuter, R., Ward, T.R., (2017) Chem. Rev., 118, pp. 142-231
  • Lu, Y., Yeung, N., Sieracki, N., Marshall, N.M., (2009) Nature, 460, pp. 855-862
  • Marshall, N.M., Garner, D.K., Wilson, T.D., Gao, Y.-G., Robinson, H., Nilges, M.J., Lu, Y., (2009) Nature, 462, pp. 113-116
  • Yeung, N., Lin, Y.-W., Gao, Y.-G., Zhao, X., Russell, B.S., Lei, L., Miner, K.D., Lu, Y., (2009) Nature, 462, pp. 1079-1082
  • Hosseinzadeh, P., Tian, S., Marshall, N.M., Hemp, J., Mullen, T., Nilges, M.J., Gao, Y.-G., Lu, Y., (2016) J. Am. Chem. Soc., 138, pp. 6324-6327
  • Macpherson, I.S., Rosell, F.I., Scofield, M., Mauk, A.G., Murphy, M.E.P., (2010) Protein Eng., Des. Sel., 23, pp. 137-145
  • Mate, D.M., Alcalde, M., (2015) Biotechnol. Adv., 33, pp. 25-40
  • Dennison, C., Vijgenboom, E., De Vries, S., Van Der Oost, J., Canters, G.W., (1995) FEBS Lett., 365, pp. 92-94
  • Hay, M., Richards, J.H., Lu, Y., (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 461-464
  • Hosseinzadeh, P., Lu, Y., (2016) Biochim. Biophys. Acta, 1857, pp. 557-581
  • Ledesma, G.N., Murgida, D.H., Ly, H.K., Wackerbarth, H., Ulstrup, J., Costa-Filho, A.J., Vila, A.J., (2007) J. Am. Chem. Soc., 129, pp. 11884-11885
  • Abriata, L.A., Banci, L., Bertini, I., Ciofi-Baffoni, S., Gkazonis, P., Spyroulias, G.A., Vila, A.J., Wang, S., (2008) Nat. Chem. Biol., 4, pp. 599-601
  • Abriata, L.A., Ledesma, G.N., Pierattelli, R., Vila, A.J., (2009) J. Am. Chem. Soc., 131, pp. 1939-1946
  • Zaballa, M.-E., Abriata, L.A., Donaire, A., Vila, A.J., (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 9254-9259
  • Gray, K.A., Knaff, D.B., Husain, M., Davidson, V.L., (1986) FEBS Lett., 207, pp. 239-242
  • Battistuzzi, G., Borsari, M., Cowan, J.A., Eicken, C., Loschi, L., Sola, M., (1999) Biochemistry, 38, pp. 5553-5562
  • Battistuzzi, G., Bellei, M., Borsari, M., Canters, G.W., De Waal, E., Jeuken, L.J.C., Ranieri, A., Sola, M., (2003) Biochemistry, 42, pp. 9214-9220
  • Battistuzzi, G., Borsari, M., Loschi, L., Sola, M., (1997) J. Biol. Inorg Chem., 2, pp. 350-359
  • Fujita, K., Nakamura, N., Ohno, H., Leigh, B.S., Niki, K., Gray, H.B., Richards, J.H., (2004) J. Am. Chem. Soc., 126, pp. 13954-13961
  • Laviron, E., (1979) J. Electroanal. Chem. Interfacial Electrochem., 101, pp. 19-28
  • Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, pp. 12814-12819
  • Khoshtariya, D.E., Dolidze, T.D., Shushanyan, M., Davis, K.L., Waldeck, D.H., Van Eldik, R., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 2757-2762
  • Roger, M., Biaso, F., Castelle, C.J., Bauzan, M., Chaspoul, F., Lojou, E., Sciara, G., Ilbert, M., (2014) PLoS One, 9, p. e98941
  • Blair, D.F., Campbell, G.W., Cho, W.K., English, A.M., Fry, H.A., Lum, V., Norton, K.A., Chan, S.I., (1985) J. Am. Chem. Soc., 107, pp. 5755-5766
  • Andrew, C.R., Yeom, H., Valentine, J.S., Karlsson, B.G., Van Pouderoyen, G., Canters, G.W., Loehr, T.M., Bonander, N., (1994) J. Am. Chem. Soc., 116, pp. 11489-11498
  • Andrew, C.R., Sanders-Loehr, J., (1996) Acc. Chem. Res., 29, pp. 365-372
  • Han, J., Loehr, T.M., Lu, Y., Valentine, J.S., Averill, B.A., Sanders-Loehr, J., (1993) J. Am. Chem. Soc., 115, pp. 4256-4263
  • Kalverda, A.P., Salgado, J., Dennison, C., Canters, G.W., (1996) Biochemistry, 35, pp. 3085-3092
  • Kroes, S.J., Salgado, J., Parigi, G., Luchinat, C., Canters, G.W., (1996) J. Biol. Inorg Chem., 1, pp. 551-559
  • Donaire, A., Jiménez, B., Fernández, C.O., Pierattelli, R., Niizeki, T., Moratal, J.-M., Hall, J.F., Vila, A.J., (2002) J. Am. Chem. Soc., 124, pp. 13698-13708
  • Cunane, L.M., Chen, Z.W., Durley, R.C., Mathews, F.S., (1996) Acta Crystallogr., Sect. D: Biol. Crystallogr., 52, pp. 676-686
  • Velarde, M., Huber, R., Yanagisawa, S., Dennison, C., Messerschmidt, A., (2007) Biochemistry, 46, pp. 9981-9991
  • Basumallick, L., Sarangi, R., Debeer George, S., Elmore, B., Hooper, A.B., Hedman, B., Hodgson, K.O., Solomon, E.I., (2005) J. Am. Chem. Soc., 127, pp. 3531-3544
  • Yanagisawa, S., Dennison, C., (2003) J. Am. Chem. Soc., 125, pp. 4974-4975
  • Yanagisawa, S., Dennison, C., (2004) J. Am. Chem. Soc., 126, pp. 15711-15719
  • Li, C., Yanagisawa, S., Martins, B.M., Messerschmidt, A., Banfield, M.J., Dennison, C., (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 7258-7263
  • Li, C., Banfield, M.J., Dennison, C., (2007) J. Am. Chem. Soc., 129, pp. 709-718
  • Sato, K., Firbank, S.J., Li, C., Banfield, M.J., Dennison, C., (2008) Chemistry, 14, pp. 5820-5828
  • Sato, K., Li, C., Salard, I., Thompson, A.J., Banfield, M.J., Dennison, C., (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 5616-5621
  • Hwang, H.J., Berry, S.M., Nilges, M.J., Lu, Y., (2005) J. Am. Chem. Soc., 127, pp. 7274-7275
  • Den Blaauwen, T., Van De Kamp, M., Canters, G.W., (1991) J. Am. Chem. Soc., 113, pp. 5050-5052
  • Den Blaauwen, T., Hoitink, C.W., Canters, G.W., Han, J., Loehr, T.M., Sanders-Loehr, J., (1993) Biochemistry, 32, pp. 12455-12464
  • Den Blaauwen, T., Canters, G.W., (1993) J. Am. Chem. Soc., 115, pp. 1121-1129
  • Vidakovic, M., Germanas, J.P., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 1622-1624
  • Van Pouderoyen, G., Andrew, C.R., Loehr, T.M., Sanders-Loehr, J., Mazumdar, S., Hill, H.A., Canters, G.W., (1996) Biochemistry, 35, pp. 1397-1407
  • Gorren, A.C.F., Den Blaauwen, T., Canters, G.W., Hopper, D.J., Duine, J.A., (1996) FEBS Lett., 381, pp. 140-142
  • Bonander, N., Karlsson, B.G., Vänngård, T., (1996) Biochemistry, 35, pp. 2429-2436
  • Yanagisawa, S., Banfield, M.J., Dennison, C., (2006) Biochemistry, 45, pp. 8812-8822
  • Van Gastel, M., Nagano, Y., Zondervan, R., Canters, G.W., Jeuken, L.J.C., Warmerdam, G.C.M., De Waal, E.C., Groenen, E.J.J., (2002) J. Phys. Chem. B, 106, pp. 4018-4021
  • Dong, S., Ybe, J.A., Hecht, M.H., Spiro, T.G., (1999) Biochemistry, 38, pp. 3379-3385
  • Lancaster, K.M., Debeer George, S., Yokoyama, K., Richards, J.H., Gray, H.B., (2009) Nat. Chem., 1, pp. 711-715
  • Lancaster, K.M., Zaballa, M.-E., Sproules, S., Sundararajan, M., Debeer, S., Richards, J.H., Vila, A.J., Gray, H.B., (2012) J. Am. Chem. Soc., 134, pp. 8241-8253
  • Abriata, L.A., Vila, A.J., (2014) J. Inorg. Biochem., 132, pp. 18-20
  • Guckert, J.A., Lowery, M.D., Solomon, E.I., (1995) J. Am. Chem. Soc., 117, pp. 2817-2844
  • Clark, K.M., Yu, Y., Marshall, N.M., Sieracki, N.A., Nilges, M.J., Blackburn, N.J., Van Der Donk, W.A., Lu, Y., (2010) J. Am. Chem. Soc., 132, pp. 10093-10101
  • Tian, S., Liu, J., Cowley, R.E., Hosseinzadeh, P., Marshall, N.M., Yu, Y., Robinson, H., Lu, Y., (2016) Nat. Chem., 8, pp. 670-677
  • Stoll, S., Schweiger, A., (2006) J. Magn. Reson., 178, pp. 42-55
  • Gruene, T., (2014) SFRMTOOLS, , University of Goettingen, Germany
  • Kabsch, W., (2010) Acta Crystallogr., Sect. D: Biol. Crystallogr., 66, pp. 125-132
  • Evans, P.R., Murshudov, G.N., (2013) Acta Crystallogr., Sect. D: Biol. Crystallogr., 69, pp. 1204-1214
  • McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., (2007) J. Appl. Crystallogr., 40, pp. 658-674
  • Williams, P.A., Blackburn, N.J., Sanders, D., Bellamy, H., Stura, E.A., Fee, J.A., McRee, D.E., (1999) Nat. Struct. Biol., 6, pp. 509-516
  • Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., (2010) Acta Crystallogr., Sect. D: Biol. Crystallogr., 66, pp. 486-501
  • Bricogne, G., Blanc, E., Brandl, M., Flensburg, C., Keller, P., Paciorek, W., Roversi, P., Womack, T.O., (2014) BUSTER, , Global Phasing Ltd., Cambridge, United Kingdom
  • Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., (2010) Acta Crystallogr., Sect. D: Biol. Crystallogr., 66, pp. 12-21

Citas:

---------- APA ----------
Espinoza-Cara, A., Zitare, U., Alvarez-Paggi, D., Klinke, S., Otero, L.H., Murgida, D.H. & Vila, A.J. (2018) . Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis. Chemical Science, 9(32), 6692-6702.
http://dx.doi.org/10.1039/c8sc01444b
---------- CHICAGO ----------
Espinoza-Cara, A., Zitare, U., Alvarez-Paggi, D., Klinke, S., Otero, L.H., Murgida, D.H., et al. "Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis" . Chemical Science 9, no. 32 (2018) : 6692-6702.
http://dx.doi.org/10.1039/c8sc01444b
---------- MLA ----------
Espinoza-Cara, A., Zitare, U., Alvarez-Paggi, D., Klinke, S., Otero, L.H., Murgida, D.H., et al. "Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis" . Chemical Science, vol. 9, no. 32, 2018, pp. 6692-6702.
http://dx.doi.org/10.1039/c8sc01444b
---------- VANCOUVER ----------
Espinoza-Cara, A., Zitare, U., Alvarez-Paggi, D., Klinke, S., Otero, L.H., Murgida, D.H., et al. Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis. Chem. Sci. 2018;9(32):6692-6702.
http://dx.doi.org/10.1039/c8sc01444b