Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Evolutionary chromosome change involves significant variation in DNA amount in diploids and genome downsizing in polyploids. Genome size and karyotype parameters of Hippeastrum species with different ploidy level were analysed. In Hippeastrum, polyploid species show less DNA content per basic genome than diploid species. The rate of variation is lower at higher ploidy levels. All the species have a basic number x = 11 and bimodal karyotypes. The basic karyotypes consist of four short metacentric chromosomes and seven large chromosomes (submetacentric and subtelocentric). The bimodal karyotype is preserved maintaining the relative proportions of members of the haploid chromosome set, even in the presence of genome downsizing. The constancy of the karyotype is maintained because changes in DNA amount are proportional to the length of the whole-chromosome complement and vary independently in the long and short sets of chromosomes. This karyotype constancy in taxa of Hippeastrumwith different genome size and ploidy level indicates that the distribution of extra DNA within the complement is not at random and suggests the presence of mechanisms selecting for constancy, or against changes, in karyotype morphology.

Registro:

Documento: Artículo
Título:Genome downsizing and karyotype constancy in diploid and polyploid congeners: A model of genome size variation
Autor:Poggio, L.; Realini, M.F.; Fourastié, M.F.; García, A.M.; González, G.E.
Filiación:Instituto de Ecología, Genética y Evolución (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Bimodal karyotype; DNA amount variation; Genome size; Hippeastrum; Karyotype constancy; Polyploids
Año:2014
Volumen:6
DOI: http://dx.doi.org/10.1093/aobpla/plu029
Título revista:AoB PLANTS
Título revista abreviado:AoB Plants
ISSN:20412851
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20412851_v6_n_p_Poggio

Referencias:

  • Aitken, A.C., On least squares and linear combinations of observations (1935) Proceedings of the Royal Society of Edinburgh, 55, pp. 42-48
  • Arroyo, S.C., The chromosomes of Hippeastrum, Amaryllis and Phycella (Amaryllidaceae) (1982) Kew Bulletin, 37, pp. 211-216
  • Beltrao, G.T., Guerra, M., Cytogenetica de angiospermas coletadas em Pernambuco (1990) Ciência e Cultura, 42, pp. 839-845
  • Bennett, M.D., Smith, J.B., Nuclear DNA amounts in angiosperms (1976) Proceedings of the Royal Society of London, 274, pp. 227-274
  • Bennetzen, J.L., Jianxin, M.A., Devos, K.M., Mechanisms of recent genome size variation in flowering plants (2005) Annals of Botany, 95, pp. 127-132
  • Brandham, P.E., The chromosomes of the Liliaceae II. Polyploidy and karyotype variation in the Aloineae (1971) Kew Bulletin, 25, pp. 381-399
  • Brandham, P.E., Evolution in a stable chromosome system (1983) Kew Chromosome Conference II, pp. 251-260. , Brandham PE, Bennet MD, eds. London: George Allen & Un Win
  • Brandham, P.E., Bhandol, P.S., Chromosomal relationships between the genera Amaryllis and Hippeastrum (Amaryllidaceae) (1997) Kew Bulletin, 52, pp. 973-980
  • Brandham, P.E., Doherty, M.J., Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection (1998) Annals of Botany, 82, pp. 67-73
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2012) InfoStat versión, , http://www.infostat.com.ar, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina
  • Feldman, M., Levy, A.A., Allopolyploidy a shaping force in the evolution of wheat genomes (2005) Cytogenetic and Genome Research, 109, pp. 250-258
  • Fisher, R.A., (1932) Statistical methods for research workers, , 4th edn. Edinburgh: Oliver and Boyd
  • Jones, R.N., Langdom, T., The plant nucleus at war and peace: genome organization in the interphase nucleus (2013) Plant genome diversity, 2, pp. 13-31. , Leitch IJ, Greilhuber J, Dolezel J., Wendel JF, eds. New York: Springer
  • Kellogg, E.A., Bennetzen, J.L., The evolution of nuclear genome structure in seed plants (2004) American Journal of Botany, 91, pp. 170-1725
  • Lakshmi, N., Cytotaxonomical studies in eight genera of Amaryllidaceae (1980) Cytologia, 45, pp. 663-773
  • Leitch, I.J., Bennett, M.D., Genome downsizing in polyploid plants (2004) Biological Journal of the Linnean Society, 82, pp. 651-663
  • Leitch, I.J., Leitch, A.R., Genome size diversity and evolution in land plants (2013) Plant genome diversity, 2, pp. 307-322. , Leitch IJ, Greilhuber J, Dolezel J, Wendel JF, eds. Vienna: Springer
  • Leitch, I.J., Chase, M.W., Bennett, M.D., Phylogenetic analysis of DNA C-value provides evidence for a small ancestral genome size in flowering plants (1998) Annals of Botany, 82, pp. 85-94
  • Levan, A., Fredga, K., Sandberg, A.A., Nomenclature for centromeric position on chromosomes (1964) Hereditas, 52, pp. 201-220
  • Ma, X.F., Gustafson, J.P., Timing and rate of genome variation in Triticale following allopolyploidization (2006) Genome, 49, pp. 950-958
  • Meerow, A.W., Charles, L.G., Qin-Bao, L., Si-Lin, Y., Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences (2000) Systematic Botany, 25, pp. 708-726
  • Naranjo, C.A., Cariotipo de nueve especies argentinas de Rhodophiala, Hippeastrum, Zephyrantes, Habranthus (Amaryllidaceae) (1969) Kurtziana, 5, pp. 67-87
  • Naranjo, C.A., Andrada, A.B., El cariotipo fundamental del género Hippeastrum Herb. (Amaryllidaceae) (1975) Darwiniana, 19, pp. 556-582
  • Naranjo, C.A., Poggio, L., A comparison of karyotype, Ag-NOR bands and DNA contents in Amaryllis and Hippeastrum (Amaryllidaceae) (1988) Kew Bulletin, 42, pp. 317-325
  • Naranjo, C.A., Ferrari, M.R., Palermo, A.M., Poggio, L., Karyotype, DNA content and meiotic behaviour in five South American species of Vicia (Fabaceae) (1998) Annals of Botany, 82, pp. 757-764
  • Navrátilová, A., Neumann, P.A., Macas, J., Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences (2003) Annals of Botany, 91, pp. 921-926
  • Neto, E.M., Numeros de cromossomos dos genero Hippeastrum Herb (1948) Boletim da Sociedade Brasileira de Agronomia, 8, pp. 383-388
  • Parida, A., Raina, S.N., Narayan, R.K.J., Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae) (1990) Genetica, 82, pp. 125-133
  • Peruzzi, L., Eroglu, H.E., Karyotype asymmetry: again, how to measure and what to measure? (2013) Comparative Cytogenetics, 7, pp. 1-9
  • Peruzzi, L., Leitch, I.J., Caparelli, K.F., Chromosome diversity and evolution in Liliaceae (2009) Annals of Botany, 103, pp. 459-475
  • Poggio, L., Burghardt, A.D., Hunziker, J.H., Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae) (1989) Heredity, 63, pp. 321-328
  • Poggio, L., González, G.E., Naranjo, C.A., Chromosome studies in Hippeastrum (Amaryllidaceae): variation in genome size (2007) Botanical Journal of the Linnean Society, 155, pp. 171-178
  • (2004) R: a language and environment for statistical computing, , http://www.R-project.org, Vienna, Austria: R Foundation for Statistical Computing
  • Romero Zarco, C., A new method for estimating karyotype asymmetry (1986) Taxon, 35, pp. 526-530
  • Sato, D., Karyotype alteration and phylogeny. IV. Karyotypes in Amaryllidaceae with special reference to the SAT-chromosome (1938) Cytologia, 9, pp. 203-242
  • Soltis, D.E., Soltis, P.S., Tate, J.A., Advances in the study of polyploidy since plant speciation (2003) New Phytologist, 161, pp. 173-191
  • Srivastava, S., Lavania, U.C., Evolutionary DNA variation in Papaver (1991) Genome, 34, pp. 763-768
  • Tito, C.M., Poggio, L., Naranjo, C.A., Cytogenetic studiesin genus Zea 3. DNA content and heterochromatin in species and hybrids (1991) Theoretical and Applied Genetics, 83, pp. 58-64
  • Vosa, C.G., On chromosome uniformity, bimodality and evolution in the tribe Aloineae (Asphodelaceae) (2005) Caryologia, 581, pp. 83-85
  • Weiss-Schneeweiss, H., Schneeweiss, G.M., Karyotype diversity and evolutionary trends in angiosperms (2013) Plant genome diversity, 2, pp. 209-230. , Leitch IJ, Greilhuber J, Dolezel J, Wendel JF, eds. Vienna: Springer
  • White, M.J.D., (1973) Animal cytology and evolution, p. 961. , Cambridge: Cambridge University Press
  • Zou, Q.L., Quin, Z.X., The karyotype analysis of Hippeastrum rutilum (1994) Guihaia, 14, pp. 37-38

Citas:

---------- APA ----------
Poggio, L., Realini, M.F., Fourastié, M.F., García, A.M. & González, G.E. (2014) . Genome downsizing and karyotype constancy in diploid and polyploid congeners: A model of genome size variation. AoB PLANTS, 6.
http://dx.doi.org/10.1093/aobpla/plu029
---------- CHICAGO ----------
Poggio, L., Realini, M.F., Fourastié, M.F., García, A.M., González, G.E. "Genome downsizing and karyotype constancy in diploid and polyploid congeners: A model of genome size variation" . AoB PLANTS 6 (2014).
http://dx.doi.org/10.1093/aobpla/plu029
---------- MLA ----------
Poggio, L., Realini, M.F., Fourastié, M.F., García, A.M., González, G.E. "Genome downsizing and karyotype constancy in diploid and polyploid congeners: A model of genome size variation" . AoB PLANTS, vol. 6, 2014.
http://dx.doi.org/10.1093/aobpla/plu029
---------- VANCOUVER ----------
Poggio, L., Realini, M.F., Fourastié, M.F., García, A.M., González, G.E. Genome downsizing and karyotype constancy in diploid and polyploid congeners: A model of genome size variation. AoB Plants. 2014;6.
http://dx.doi.org/10.1093/aobpla/plu029