Artículo

Raab, M.; Vietz, C.; Stefani, F.D.; Acuna, G.P.; Tinnefeld, P."Shifting molecular localization by plasmonic coupling in a single-molecule mirage" (2017) Nature Communications. 8
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: Plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: A single-molecule mirage.

Registro:

Documento: Artículo
Título:Shifting molecular localization by plasmonic coupling in a single-molecule mirage
Autor:Raab, M.; Vietz, C.; Stefani, F.D.; Acuna, G.P.; Tinnefeld, P.
Filiación:Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Rebenring 56, Braunschweig, 38106, Germany
Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad de Buenos Aires, C1425FQD, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Guiraldes 2620, Ciudad de Buenos Aires, C1428EAH, Argentina
Palabras clave:DNA; gold nanoparticle; nanorod; DNA; gold; molecular analysis; nanoparticle; nanotechnology; research work; Article; comparative study; computer simulation; controlled study; feedback system; field emission; finite difference frequency domain; fluorescence microscopy; image analysis; points accumulation for imaging in nanoscale topography; positron; separation technique; single molecule imaging; single molecule mirage; surface plasmon resonance; three dimensional single molecule localization nanoscopy; topography
Año:2017
Volumen:8
DOI: http://dx.doi.org/10.1038/ncomms13966
Handle:http://hdl.handle.net/20.500.12110/paper_20411723_v8_n_p_Raab
Título revista:Nature Communications
Título revista abreviado:Nat. Commun.
ISSN:20411723
CAS:DNA, 9007-49-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v8_n_p_Raab

Referencias:

  • Maier, S.A., (2007) Plasmonics: Fundamentals and Applications, , Springer
  • Surface plasmon resurrection (2012) Nat Photonics, 6, p. 707
  • Kinkhabwala, A.A., Yu, Z., Fan, S., Moerner, W.E., Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas (2012) Chem. Phys., 406, pp. 3-8
  • Acuna, G.P., Fluorescence enhancement at docking sites of DNA-directed self-Assembled nanoantennas (2012) Science, 338, pp. 506-510
  • Le Ru, E.C., Etchegoin, P.G., (2009) Principles of Surface Enhanced Raman Spectroscopy, , Elsevier
  • Stefani, F.D.F.D., Photonic mode density effects on single-molecule fluorescence blinking (2007) New J. Phys., 9, p. 21
  • Muskens, O.L., Sanchez-Gil, J.A., Giannini, V., Gomez-Rivas, J., Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas (2007) Nano Lett., 7, pp. 2871-2875
  • Holzmeister, P., Quantum yield and excitation rate of single molecules close to metallic nanostructures (2014) Nat. Commun, 5, p. 5356
  • Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., Optical antennas direct single-molecule emission (2008) Nat. Photonics, 2, pp. 234-237
  • Shegai, T., Unidirectional broadband light emission from supported plasmonic nanowires (2011) Nano Lett., 11, pp. 706-711
  • Hell, S.W., Microscopy and its focal switch (2009) Nat. Methods, 6, pp. 24-32
  • Hell, S.W., Nanoscopy with focused light (Nobel Lecture) (2015) Angew. Chemie Int Ed., 54, pp. 8054-8066
  • Moerner, W.E.W.E., Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy (nobel lecture) (2015) Angew. Chemie Int. Ed., 54, pp. 8067-8093
  • Betzig, E., Single molecules, cells, and super-resolution optics (nobel lecture) (2015) Angew. Chemie Int. Ed., 54, pp. 8034-8053
  • Balzarotti, F., Stefani, F.D.F.D., Plasmonics meets far-field optical (2012) ACS Nano, 6, pp. 4580-4584
  • Stranahan, S.M., Willets, K.A., Super-resolution optical imaging of singlemolecule SERS hot spots (2010) Nano Lett., 10, pp. 3777-3784
  • Cang, H., Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging (2011) Nature, 469, pp. 385-388
  • Weber, M.L., Litz, J.P., Masiello, D.J., Willets, K.A., Super-resolution imaging reveals a difference between SERS and luminescence centroids (2012) ACS Nano, 6, pp. 1839-1848
  • Lin, H., Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy (2012) Chemphyschem, 13, pp. 973-981
  • Blythe, K.L., Titus, E.J., Willets, K.A., Triplet-state-mediated superresolution imaging of fluorophore-labeled gold nanorods (2014) Chemphyschem, 15, pp. 784-793
  • Blythe, K.L., Titus, E.J., Willets, K.A., Comparing the accuracy of reconstructed image size in super-resolution imaging of fluorophore-labeled gold nanorods using different fit models (2015) J. Phys. Chem. C, 119, pp. 19333-19343
  • Blythe, K.L., Willets, K.A., Super-resolution imaging of fluorophore-labeled DNA bound to gold nanoparticles: A single-molecule, single-particle approach (2016) J. Phys. Chem. C, 120, pp. 803-815
  • Simoncelli, S., Roberti, M.J., Araoz, B., Bossi, M.L., Aramendía, P.F., Mapping the fluorescence performance of a photochromic-fluorescent system coupled with gold nanoparticles at the single-molecule-single-particle level (2014) J. Am. Chem. Soc., 136, pp. 6878-6880
  • Wertz, E., Isaacoff, B.P., Flynn, J.D., Biteen, J.S., Single-molecule superresolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale (2015) Nano Lett., 15, pp. 2662-2670
  • Su, L., Super-resolution localization and defocused fluorescence microscopy on resonantly coupled single-molecule, single-nanorod hybrids (2016) ACS Nano, 10, pp. 2455-2466
  • Raab, M., Schmied, J.J., Jusuk, I., Forthmann, C., Tinnefeld, P., Fluorescence microscopy with 6 nm resolution on DNA origami (2014) Chemphyschem, 15, pp. 2431-2435
  • Ropp, C., Nanoscale probing of image-dipole interactions in a metallic nanostructure (2015) Nat. Commun, 6, p. 6558
  • Su, L., Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy (2015) Nat. Commun, 6, p. 6287
  • Acuna, G.P., Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami (2012) ACS Nano, 6, pp. 3189-3195
  • Pellegrotti, J.V., Controlled reduction of photobleaching in DNA origamigold nanoparticle hybrids (2014) Nano Lett., 14, pp. 2831-2836
  • Puchkova, A., DNA origami nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 mm (2015) Nano Lett., 15, pp. 8354-8359
  • Jungmann, R., Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami (2010) Nano Lett., 10, pp. 4756-4761
  • Enderlein, J., Toprak, E., Selvin, P.R., Polarization effect on position accuracy of fluorophore localization (2006) Opt. Express, 14, p. 8111
  • Nieuwenhuizen, R.P.J., Measuring image resolution in optical nanoscopy (2013) Nat. Methods, 10, pp. 557-562
  • Thacker, V.V., DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering (2014) Nat. Commun, 5, p. 3448
  • Zhou, B., Shi, B., Jin, D., Liu, X., Controlling upconversion nanocrystals for emerging applications (2015) Nat. Nanotechnol, 10, pp. 924-936
  • Vietz, C., Lalkens, B., Acuna, G.P., Tinnefeld, P., Functionalizing large nanoparticles for small gaps in dimer nanoantennas (2016) New J. Phys., 18, p. 45012
  • Schmied, J.J., DNA origami-based standards for quantitative fluorescence microscopy (2014) Nat. Protoc., 9, pp. 1367-1391

Citas:

---------- APA ----------
Raab, M., Vietz, C., Stefani, F.D., Acuna, G.P. & Tinnefeld, P. (2017) . Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nature Communications, 8.
http://dx.doi.org/10.1038/ncomms13966
---------- CHICAGO ----------
Raab, M., Vietz, C., Stefani, F.D., Acuna, G.P., Tinnefeld, P. "Shifting molecular localization by plasmonic coupling in a single-molecule mirage" . Nature Communications 8 (2017).
http://dx.doi.org/10.1038/ncomms13966
---------- MLA ----------
Raab, M., Vietz, C., Stefani, F.D., Acuna, G.P., Tinnefeld, P. "Shifting molecular localization by plasmonic coupling in a single-molecule mirage" . Nature Communications, vol. 8, 2017.
http://dx.doi.org/10.1038/ncomms13966
---------- VANCOUVER ----------
Raab, M., Vietz, C., Stefani, F.D., Acuna, G.P., Tinnefeld, P. Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nat. Commun. 2017;8.
http://dx.doi.org/10.1038/ncomms13966