Artículo

Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F. "Transfer of optical orbital angular momentum to a bound electron" (2016) Nature Communications. 7
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems. © The Author(s) 2016.

Registro:

Documento: Artículo
Título:Transfer of optical orbital angular momentum to a bound electron
Autor:Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F.
Filiación:QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, Mainz, 55128, Germany
Departamento de Física, FCEyN, UBA, IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:angular momentum; electron; light; optical property; quantum mechanics; vortex; Article; atom; electron; frequency; laser; light; magnetic field; motion; oscillation; photon
Año:2016
Volumen:7
DOI: http://dx.doi.org/10.1038/ncomms12998
Título revista:Nature Communications
Título revista abreviado:Nat. Commun.
ISSN:20411723
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v7_n_p_Schmiegelow

Referencias:

  • Beth, R.A., Mechanical detection and measurement of the angular momentum of light (1936) Phys. Rev., 50, pp. 115-125
  • Friese, M.E.J., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop, H., Optical alignment and spinning of laser-trapped microscopic particles (1998) Nature, 394, pp. 348-350
  • Kastler, A., Optical methods for studying hertzian resonances (1967) Science, 158, pp. 214-221
  • Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes (1992) Phys. Rev. A, 45, pp. 8185-8189
  • Torres, J.P., Torner, L., (2011) Twisted Photons: Applications of Light with Orbital Angular Momentum, , Wiley
  • Andrews, D.L., Babiker, M., (2013) The Angular Momentum of Light, , Cambridge University Press
  • Fickler, R., Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information (2014) Nat. Commun., 5, p. 4502
  • Souza, C.E.R., Quantum key distribution without a shared reference frame (2008) Phys. Rev. A, 77, p. 032345
  • Nicolas, A., A quantum memory for orbital angular momentum photonic qubits (2014) Nat. Photonics, 8, pp. 234-238
  • Verbeeck, J., Tian, H., Schattschneider, P., Production and application of electron vortex beams (2010) Nature, 467, pp. 301-304
  • Clark, C.W., Controlling neutron orbital angular momentum (2015) Nature, 525, pp. 504-506
  • He, J., Generation and evolution of the terahertz vortex beam (2013) Opt. Express, 21, p. 20230
  • He, H., Friese, M.E.J., Heckenberg, N.R., Rubinsztein-Dunlop, H., Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity (1995) Phys. Rev. Lett., 75, pp. 826-829
  • Andersen, M.F., Quantized rotation of atoms from photons with orbital angular momentum (2006) Phys. Rev. Lett., 97, p. 170406
  • Van Enk, S.J., Nienhuis, G., Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields (1994) J. Mod. Opt, 41, pp. 963-977
  • Babiker, M., Bennett, C.R., Andrews, D.L., Davila Romero, L.C., Orbital angular momentum exchange in the interaction of twisted light with molecules (2002) Phys. Rev. Lett., 89, p. 143601
  • Jauregui, R., Rotational effects of twisted light on atoms beyond the paraxial approximation (2004) Phys. Rev. A, p. 033415. , 033415
  • Andrews, D.L., Romero, L.C.D., Babiker, M., On optical vortex interactions with chiral matter (2004) Opt. Commun., 237, pp. 133-139
  • Klimov, V., Bloch, D., Ducloy, M., Leite, J.R.R., Detecting photons in the dark region of Laguerre-Gauss beams (2009) Opt. Express, 17, p. 9718
  • Tang, Y., Cohen, A.E., Optical chirality and its interaction with matter (2010) Phys. Rev. Lett., 104, pp. 1-4
  • Schmiegelow, C.T., Schmidt-Kaler, F., Light with orbital angular momentum interacting with trapped ions (2012) Eur. Phys. J.D, 66, pp. 1-9
  • Mondal, P.K., Deb, B., Majumder, S., Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules (2014) Phys. Rev. A, 89, pp. 29-33
  • Scholz-Marggraf, H.M., Fritzsche, S., Serbo, V.G., Afanasev, A., Surzhykov, A., Absorption of twisted light by hydrogenlike atoms (2014) Phys. Rev. A, 90, p. 013425
  • Afanasev, A., Carlson, C.E., Mukherjee, A., High-multipole excitations of hydrogen-like atoms by twisted photons near a phase singularity (2016) J. Opt., 18, p. 074013
  • Peshkov, A.A., Serbo, V.G., Fritzsche, S., Surzhykov, A., Absorption of twisted light by a mesoscopic atomic target (2016) Phys. Scripta, 91, p. 064001
  • Araoka, F., Verbiest, T., Clays, K., Persoons, A., Interactions of twisted light with chiral molecules: An experimental investigation (2005) Phys. Rev. A, 71, p. 055401
  • Loffler, W., Broer, D.J., Woerdman, J.P., Circular dichroism of cholesteric polymers and the orbital angular momentum of light (2011) Phys. Rev. A, 83, p. 065801
  • Mathevet, R., De Lesegno, B.V., Pruvost, L., Rikken, G.L.J.A., Negative experimental evidence for magneto-orbital dichroism (2013) Opt. Express, 21, pp. 3941-3945
  • Rochester, S.M., Budker, D., Atomic polarization visualized (2001) Am. J. Phys., 69, p. 450
  • Mundt, A.B., Coherent coupling of a single 40Ca+ ion to a high-finesse optical cavity (2003) Appl. Phys. B, 76, pp. 117-124
  • Sauter, T.H., Neuhauser, W., Blatt, R., Toschek, P.E., Observation of quantum jumps (1986) Phys. Rev. Lett., 57, pp. 1696-1698
  • Schulz, S.A., Poschinger, U., Ziesel, F., Schmidt-Kaler, F., Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap (2008) New J. Phys., 10, p. 045007
  • Mair, A., Vaziri, A., Weihs, G., Zeilinger, A., Entanglement of the orbital angular momentum states of photons (2001) Nature, 412, pp. 313-316
  • Guthohrlein, G.R., Keller, M., Hayasaka, K., Lange, W., Walther, H., A single ion as a nanoscopic probe of an optical field (2001) Nature, 414, pp. 49-51
  • Horak, P., Optical kaleidoscope using a single atom (2002) Phys. Rev. Lett., 88, p. 043601
  • Berry, M.V., Dennis, M.R., Quantum cores of optical phase singularities (2004) J. Opt. A, 6, p. S178
  • Haffner, H., Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor (2003) Phys. Rev. Lett., 90, p. 143602
  • Ludlow, A.D., Boyd, M.M., Ye, J., Peik, E., Schmidt, P.O., Optical atomic clocks (2015) Rev. Mod. Phys., 87, pp. 637-701
  • Rodrigues, J.D., Marcassa, L.G., Mendonca, J.T., Excitation of high orbital angular momentum rydberg states with laguerre-gauss beams (2016) J. Phys. B, 49, p. 074007
  • Germann, M., Tong, X., Willitsch, S., Observation of electric-dipole-forbidden infrared transitions in cold molecular ions (2014) Nat. Phys., 10, pp. 820-824
  • Quinteiro, G.F., Tamborenea, P.I., Electronic transitions in disk-shaped quantum dots induced by twisted light (2009) Phys. Rev. B, 79, p. 155450

Citas:

---------- APA ----------
Schmiegelow, C.T., Schulz, J., Kaufmann, H., Ruster, T., Poschinger, U.G. & Schmidt-Kaler, F. (2016) . Transfer of optical orbital angular momentum to a bound electron. Nature Communications, 7.
http://dx.doi.org/10.1038/ncomms12998
---------- CHICAGO ----------
Schmiegelow, C.T., Schulz, J., Kaufmann, H., Ruster, T., Poschinger, U.G., Schmidt-Kaler, F. "Transfer of optical orbital angular momentum to a bound electron" . Nature Communications 7 (2016).
http://dx.doi.org/10.1038/ncomms12998
---------- MLA ----------
Schmiegelow, C.T., Schulz, J., Kaufmann, H., Ruster, T., Poschinger, U.G., Schmidt-Kaler, F. "Transfer of optical orbital angular momentum to a bound electron" . Nature Communications, vol. 7, 2016.
http://dx.doi.org/10.1038/ncomms12998
---------- VANCOUVER ----------
Schmiegelow, C.T., Schulz, J., Kaufmann, H., Ruster, T., Poschinger, U.G., Schmidt-Kaler, F. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 2016;7.
http://dx.doi.org/10.1038/ncomms12998