Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation. © 2015 Macmillan Publishers Limited. All rights reserved.

Registro:

Documento: Artículo
Título:Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors
Autor:Díaz, S.A.; Gillanders, F.; Jares-Erijman, E.A.; Jovin, T.M.
Filiación:Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, Göttingen, 37077, Germany
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:nanorod; polymer; quantum dot; crystal structure; polymer; probe; quantum mechanics; resonance; semiconductor industry; Article; fluorescence resonance energy transfer; light absorption; photoactivation; quantum yield; regulatory mechanism; surface property; ultraviolet radiation
Año:2015
Volumen:6
DOI: http://dx.doi.org/10.1038/ncomms7036
Título revista:Nature Communications
Título revista abreviado:Nat. Commun.
ISSN:20411723
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v6_n_p_Diaz

Referencias:

  • Giordano, L., Jovin, T.M., Irie, M., Jares-Erijman, E.A., Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET (2002) J. Am. Chem. Soc., 124, pp. 7481-7489
  • Bianco, A., Perissinotto, S., Garbugli, M., Lanzani, G., Bertarelli, C., Control of optical properties through photochromism: A promising approach to photonics (2011) Laser Photon. Rev., 5, pp. 711-736
  • Zhang, J., Zou, Q., Tian, H., Photochromic materials: More than meets the eye (2013) Adv. Mater., 25, pp. 378-399
  • Jares-Erijman, E.A., Jovin, T.M., FRET imaging (2003) Nat. Biotechnol., 21, pp. 1387-1395
  • Jares-Erijman, E., Giordano, L., Spagnuolo, C., Lidke, K., Jovin, T.M., Imaging quantum dots switched on and off by photochromic fluorescence resonance energy transfer (pcFRET (2005) Mol. Cryst. Liquid Cryst., 430, pp. 257-265
  • Wu, T., Boyer, J.-C., Barker, M., Wilson, D., Branda, N.R., A ''plug-and-play'' method to prepare water-soluble photoresponsive encapsulated upconverting nanoparticles containing hydrophobic molecular switches (2013) Chem. Mater., 25, pp. 2495-2502
  • Jung, H.-Y., You, S., Lee, C., You, S., Kim, Y., One-pot synthesis of monodispersed silica nanoparticles for diarylethene-based reversible fluorescence photoswitching in living cells (2013) Chem. Commun., 49, pp. 7528-7530
  • Petryayeva, E., Algar, W.R., Medintz, I.L., Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging (2013) Appl. Spectrosc., 67, pp. 215-252
  • Medintz, I.L., Mattoussi, H., Quantum dot-based resonance energy transfer and its growing application in biology (2009) Phys. Chem. Chem. Phys., 11, pp. 17-45
  • Algar, W.R., Kim, H., Medintz, I.L., Hildebrandt, N., Emerging nontraditional Förster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications (2014) Coordin. Chem. Rev., 263-264, pp. 65-85
  • Ishikawa-Ankerhold, H.C., Ankerhold, R., Drummen, G.P.C., Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM (2012) Molecules, 17, pp. 4047-4132
  • Chung, I.H., Shimizu, K.T., Bawendi, M.G., Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy (2003) Proc. Natl Acad. Sci. USA, 100, pp. 405-408
  • Beljonne, D., Curutchet, C., Scholes, G.D., Silbey, R.J., Beyond Förster resonance energy transfer in biological and nanoscale systems (2009) J. Phys. Chem. B, 113, pp. 6583-6599
  • Hua, Z., Energy transfer from a single semiconductor nanocrystal to dye molecules (2014) ACS Nano, 8, pp. 7060-7066
  • Talapin, D.V., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals (2004) J. Phys. Chem. B, 108, pp. 18826-18831
  • Dáz, S.A., Photoswitchable water-soluble quantum dots: PcFRET based on amphiphilic photochromic polymer coating (2011) ACS Nano, 5, pp. 2795-2805
  • Dáz, S.A., Giordano, L., Jovin, T.M., Jares-Erijman, E.A., Modulation of a photoswitchable dual-color quantum dot containing a photochromic FRET acceptor and an internal standard (2012) Nano Lett., 12, pp. 3537-3544
  • Irie, M., Photochromism of diarylethene single molecules and single crystals (2010) Photochem. Photobiol. Sci., 9, pp. 1535-1542
  • Fernández-Argüelles, M.T., Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes (2007) Nano Lett., 7, pp. 2613-2617
  • Diaz, S.A., Giordano, L., Azcarate, J.C., Jovin, T.M., Jares-Erijman, E.A., Quantum dots as templates for self-assembly of photoswitchable polymers: Small, dual-color nanoparticles capable of facile photomodulation (2013) J. Am. Chem. Soc., 135, pp. 3208-3217
  • Nishi, H., Asahi, T., Kobatake, S., Plasmonic enhancement of gold nanoparticles on photocycloreversion reaction of diarylethene derivatives depending on particle size, distance from the particle surface, and irradiation wavelength (2012) Phys. Chem. Chem. Phys., 14, pp. 4898-4905
  • Ouhenia-Ouadahi, K., Photochromic-fluorescent-plasmonic nanomaterials: Towards integrated three-component photoactive hybrid nanosystems (2014) Chem. Commun., 50, pp. 7299-7302
  • Spangenberg, A., Photoswitchable interactions between photochromic organic diarylethene and surface plasmon resonance of gold nanoparticles in hybrid thin films (2013) Phys. Chem. Chem. Phys., 15, pp. 9670-9678
  • Ouhenia-Ouadahi, K., Fluorescence photoswitching and photoreversible two-way energy transfer in a photochrome-fluorophore dyad (2012) Photochem. Photobiol. Sci., 11, pp. 1705-1714
  • Kim, H., Ng, C.Y.W., Algar, W.R., Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio (2014) Langmuir, 30, pp. 5676-5685
  • Fabian, A.I., Rente, T., Szollosi, J., Matyus, L., Jenei, A., Strength in numbers: Effects of acceptor abundance on FRET efficiency (2010) ChemPhysChem, 11, pp. 3713-3721
  • Van Der Meer, B.W., Kappa-squared: From nuisance to new sense (2002) Rev. Mol. Bioctechnol., 82, pp. 181-196
  • Van Der Meer, B.W., Van Der Meer, D.M., Vogel, S.S., (2013) FRET-Förster Resonance Energy Transfer, pp. 63-104. , (eds Medintz, I & Hildebrandt, N) Wiley-VCH
  • Vogel, S.S., Nguyen, T.A., Van Der Meer, B.W., Blank, P.S., The impact of heterogeneity and dark acceptor states on FRET: Implications for using fluorescent protein donors and acceptors (2012) PLoS ONE, 7, p. e49593
  • Vogel, S.S., Van Der Meer, B.W., Blank, P.S., Estimating the distance separating fluorescent protein FRET pairs (2014) Methods, 66, pp. 131-138
  • Pons, T., Medintz, I.L., Wang, X., English, D.S., Mattoussi, H., Solution-phase single quantum dot fluorescence resonance energy transfer (2006) J. Am. Chem. Soc., 128, pp. 15324-15331
  • Tagliazucchi, M., Amin, V.A., Schneebeli, S.T., Stoddart, J.F., Weiss, E.A., High-contrast photopatterning of photoluminescence within quantum dot films through degradation of a charge-transfer quencher (2012) Adv. Mater., 24, pp. 3617-3621
  • Han, G., Mokari, T., Ajo-Franklin, C., Cohen, B.E., Caged quantum dots (2008) J. Am. Chem. Soc., 130, pp. 15811-15813
  • Impellizzeri, S., McCaughan, B., Callan, J.F., Raymo, F.M., Photoinduced enhancement in the luminescence of hydrophilic quantum dots coated with photocleavable ligands (2012) J. Am. Chem. Soc., 134, pp. 2276-2283
  • Gillanders, F., Giordano, L., Diaz, S.A., Jovin, T.M., Jares-Erijman, E., Photoswitchable fluorescent diheteroarylethenes: Substituent effects on photochromic and solvatochromic properties (2014) Photochem. Photobiol. Sci., 13, pp. 603-612
  • Ohsumi, M., Fukaminato, T., Irie, M., Chemical control of the photochromic reactivity of diarylethene derivatives (2005) Chem. Commun., pp. 3921-3923
  • Fukaminato, T., Tanaka, M., Kuroki, L., Irie, M., Invisible photochromism of diarylethene derivatives (2008) Chem. Commun., pp. 3924-3926
  • Morimoto, M., Kobatake, S., Irie, M., Multicolor photochromism of two-and three-component diarylethene crystals (2003) J. Am. Chem. Soc., 125, pp. 11080-11087
  • Yamamoto, S., Matsuda, K., Irie, M., Absolute asymmetric photocyclization of a photochromic diarylethene derivative in single crystals (2003) Angew. Chem. Int. Ed., 42, pp. 1636-1639
  • Lee, N.K., Three-color alternating-laser excitation of single molecules: Monitoring multiple interactions and distances (2007) Biophys. J., 92, pp. 303-312
  • Beutler, M., SatFRET: Estimation of Förster resonance energy transfer by acceptor saturation (2008) Eur. Biophys. J., 35, pp. 115-129
  • Harke, B., Resolution scaling in STED microscopy (2008) Opt. Express, 16, pp. 4154-4162
  • Ishibashi, Y., Multiphoton-gated cycloreversion reactions of photochromic diarylethene derivatives with low reaction yields upon one-photon visible excitation (2010) Photochem. Photobiol. Sci., 9, pp. 172-180
  • Marriott, G., Optical lock-in detection imaging microscopy for contrastenhanced imaging in living cells (2008) Proc. Natl Acad. Sci. USA, 105, pp. 17789-17794
  • Janczewski, D., Tomczak, N., Han, M.-Y., Vancso, G.J., Synthesis of functionalized amphiphilic polymers for coating quantum dots (2011) Nat. Protoc., 6, pp. 1546-1553
  • Pellegrino, T., Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals (2004) Nano Lett., 4, pp. 703-707

Citas:

---------- APA ----------
Díaz, S.A., Gillanders, F., Jares-Erijman, E.A. & Jovin, T.M. (2015) . Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors. Nature Communications, 6.
http://dx.doi.org/10.1038/ncomms7036
---------- CHICAGO ----------
Díaz, S.A., Gillanders, F., Jares-Erijman, E.A., Jovin, T.M. "Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors" . Nature Communications 6 (2015).
http://dx.doi.org/10.1038/ncomms7036
---------- MLA ----------
Díaz, S.A., Gillanders, F., Jares-Erijman, E.A., Jovin, T.M. "Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors" . Nature Communications, vol. 6, 2015.
http://dx.doi.org/10.1038/ncomms7036
---------- VANCOUVER ----------
Díaz, S.A., Gillanders, F., Jares-Erijman, E.A., Jovin, T.M. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors. Nat. Commun. 2015;6.
http://dx.doi.org/10.1038/ncomms7036