Artículo

Caldarola, M.; Albella, P.; Cortés, E.; Rahmani, M.; Roschuk, T.; Grinblat, G.; Oulton, R.F.; Bragas, A.V.; Maier, S.A. "Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion" (2015) Nature Communications. 6
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field 'hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments. © 2015 Macmillan Publishers Limited. All rights reserved.

Registro:

Documento: Artículo
Título:Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
Autor:Caldarola, M.; Albella, P.; Cortés, E.; Rahmani, M.; Roschuk, T.; Grinblat, G.; Oulton, R.F.; Bragas, A.V.; Maier, S.A.
Filiación:Laboratorio de Electrónica Cuántica, Departamento de Física, FCEN, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, Argentina - IFIBA CONICET, C1428EGA, Argentina
Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom
Palabras clave:dimer; gold; nanomaterial; silicon; fluorescence; heat balance; light effect; molecular analysis; nonlinearity; optical property; Raman spectroscopy; silicon; spectroscopy; temperature effect; Article; electromagnetic field; fluorescence; heating; molecular electronics; nanofabrication; Raman spectrometry; spectroscopy; temperature
Año:2015
Volumen:6
DOI: http://dx.doi.org/10.1038/ncomms8915
Título revista:Nature Communications
Título revista abreviado:Nat. Commun.
ISSN:20411723
CAS:gold, 7440-57-5; silicon, 7440-21-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v6_n_p_Caldarola

Referencias:

  • Bharadwaj, P., Deutsch, B., Novotny, L., Optical antennas (2009) Adv. Opt. Photon., 1, pp. 438-483
  • Maier, S.A., (2007) Plasmonics - Fundamentals and Applications, , Springer
  • Schuller, J.A., Plasmonics for extreme light concentration and manipulation (2010) Nat. Mater., 9, pp. 193-204
  • De La Rica, R., Stevens, M.M., Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye (2012) Nat. Nanotechnol., 7, pp. 821-824
  • Lal, S., Tailoring plasmonic substrates for surface enhanced spectroscopies (2008) Chem. Soc. Rev., 37, pp. 898-911
  • Stiles, P.L., Dieringer, J.A., Shah, N.C., Van Duyne, R.P., Surface-enhanced Raman spectroscopy (2008) Annu. Rev. Anal. Chem., 1, pp. 601-626
  • Punj, D., A plasmonic 'antenna-in-box' platform for enhanced singlemolecule analysis at micromolar concentrations (2013) Nat. Nanotechnol., 8, pp. 512-516
  • Grinblat, G., High-efficiency second harmonic generation from a single hybrid zno nanowire/au plasmonic nano-oligomer (2014) Nano Lett., 14, pp. 6660-6665
  • Aouani, H., Rahmani, M., Navarro-Cía, M., Maier, S.A., Third-harmonicupconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna (2014) Nat. Nanotechnol., 9, pp. 290-294
  • Metzger, B., Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas (2014) Nano Lett., 14, pp. 2867-2872
  • Ward, D.R., Hüser, F., Pauly, F., Cuevas, J.C., Natelson, D., Optical rectification and field enhancement in a plasmonic nanogap (2010) Nat. Nanotechnol., 5, pp. 732-736
  • Atwater, H.A., Polman, A., Plasmonics for improved photovoltaic devices (2010) Nat. Mater., 9, pp. 205-213
  • Johnson, P.B., Christy, R.W., Optical constants of the noble metals (1972) Phys. Rev. B, 6, pp. 4370-4379
  • Khurgin, J.B., Boltasseva, A., Reflecting upon the losses in plasmonics and metamaterials (2012) MRS Bull., 37, pp. 768-779
  • Naik, G.V., Shalaev, V.M., Boltasseva, A., Alternative plasmonic materials: Beyond gold and silver (2013) Adv. Mater., 25, pp. 3264-3294
  • Baffou, G., Quidant, R., Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat (2013) Laser Photon. Rev., 7, pp. 171-187
  • Lal, S., Clare, S.E., Halas, N.J., Nanoshell-enabled photothermal cancer therapy: Impending clinical impact (2008) Accounts Chem. Res., 41, pp. 1842-1851
  • Boyer, D., Tamarat, P., Maali, A., Lounis, B., Orrit, M., Photothermal imaging of nanometer-sized metal particles among scatterers (2002) Science, 297, pp. 1160-1163
  • Christopher, P., Xin, H., Linic, S., Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures (2011) Nat. Chem., 3, pp. 467-472
  • Zijlstra, P., Paulo, P.M., Orrit, M., Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod (2012) Nat. Nanotechnol., 7, pp. 379-382
  • Ioffe, Z., Detection of heating in current-carrying molecular junctions by Raman scattering (2008) Nat. Nanotechnol., 3, pp. 727-732
  • Ward, D.R., Corley, D.A., Tour, J.M., Natelson, D., Vibrational and electronic heating in nanoscale junctions (2011) Nat. Nanotechnol., 6, pp. 33-38
  • Kuhlicke, A., Schietinger, S., Matyssek, C., Busch, K., Benson, O., In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting (2013) Nano Lett., 13, pp. 2041-2046
  • Hogan, N.J., Nanoparticles heat through light localization (2014) Nano Lett., 14, pp. 4640-4645
  • Mahmoudi, M., Variation of protein corona composition of gold nanoparticles following plasmonic heating (2013) Nano Lett., 14, pp. 6-12
  • Albella, P., Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers (2013) J. Phys. Chem. C, 117, pp. 13573-13584
  • Albella, P., Alcaraz De La Osa, R., Moreno, F., Maier, S.A., Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies (2014) ACS Photon., 1, pp. 524-529
  • Wei, L., Miroshnichenko, A.E., Kivshar, Y.S., Control of light scattering by nanoparticles with optically-induced magnetic responses (2014) Chinese Phys. B, 23, p. 047806
  • Kuznetsov, A.I., Miroshnichenko, A.E., Fu, Y.H., Zhang, J., Luk'yanchuk, B., Magnetic light (2012) Sci. Rep., 2, p. 492
  • Shcherbakov, M.R., Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response (2014) Nano Lett., 14, pp. 6488-6492
  • Schmidt, M.K., Dielectric antennas - A suitable platform for controlling magnetic dipolar emission (2012) Opt. Express, 20, pp. 13636-13650
  • Bakker, R.M., Magnetic and electric hotspots with silicon nanodimers (2015) Nano Lett., 15, pp. 2137-2142
  • Geffrin, J.M., Magnetic and electric coherence in forward-and backscattered electromagnetic waves by a single dielectric subwavelength sphere (2012) Nat. Commun., 3, p. 1171
  • Fu, Y.H., Kuznetsov, A.I., Miroshnichenko, A.E., Yu, Y.F., Luk'yanchuk, B., Directional visible light scattering by silicon nanoparticles (2013) Nat. Commun., 4, p. 1527
  • Person, S., Demonstration of zero optical backscattering from single nanoparticles (2013) Nano Lett., 13, pp. 1806-1809
  • Zywietz, U., Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses (2014) Nat. Commun., 5, p. 3402
  • Le Ru, E.C., Etchegoin, P.G., Single-molecule surface-enhanced Raman spectroscopy (2012) Annu. Rev. Phys. Chem., 63, pp. 65-87
  • Dodson, S., Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae (2013) J. Phys. Chem. Lett., 4, pp. 496-501
  • Heeg, S., Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities (2014) Nano Lett., 14, pp. 1762-1768
  • Le Ru, E., Etchegoin, P., (2009) Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects, , Elsevier
  • Alonso-González, Resolving the electromagnetic mechanism of surfaceenhanced light scattering at single hot spots (2012) Nat. Commun., 3, p. 684
  • Hou, Y., Bardo, A.M., Martinez, C., Higgins, D.A., Characterization of molecular scale environments in polymer films by single molecule spectroscopy (2000) J. Phys. Chem. B, 104, pp. 212-219
  • Hagan, T., Pilloud, D., Suppan, P., Thermochromic shifts of some molecular and exciplex fluorescence spectra (1987) Chem. Phys. Lett., 139, pp. 499-502
  • Iwai, K., Matsumura, Y., Uchiyama, S., De Silva, A.P., Development of fluorescent microgel thermometers based on thermo-responsive polymers and their modulation of sensitivity range (2005) J. Mater. Chem., 15, pp. 2796-2800
  • Cao, C., A twisted-intramolecular-charge-transfer (TICT) based ratiometric fluorescent thermometer with a mega-Stokes shift and a positive temperature coefficient (2014) Chem. Commun., 50, pp. 15811-15814
  • Barja, B.C., Chesta, C.A., Atvars, T.D., Aramendía, P.F., Fluorescent polymer coatings with tuneable sensitive range for remote temperature sensing (2013) Spectrochim. Acta A, 116, pp. 13-16
  • Anger, P., Bharadwaj, P., Novotny, L., Enhancement and quenching of singlemolecule fluorescence (2006) Phys. Review Lett., 96, p. 113002
  • Passaro, V.M., Troia, B., La Notte, M., De Leonardis, F., Photonic resonant microcavities for chemical and biochemical sensing (2013) RSC Adv., 3, pp. 25-44
  • White, I.M., Gohring, J., Fan, X., SERS-based detection in an optofluidic ring resonator platform (2007) Opt. Express, 15, pp. 17433-17442
  • Ausman, L.K., Schatz, G.C., Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons (2008) J. Chem. Phys., 129, p. 054704
  • Ganesh, N., Enhanced fluorescence emission from quantum dots on a photonic crystal surface (2007) Nat Nanotechnol., 2, pp. 515-520
  • Chen, Y.F., Serey, X., Sarkar, R., Chen, P., Erickson, D., Controlled photonic manipulation of proteins and other nanomaterials (2012) Nano Lett., 12, pp. 1633-1637
  • Takayama, O., Artigas, D., Torner, L., Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves (2014) Nat. Nanotechnol., 9, pp. 419-424
  • Baffou, G., Quidant, R., García De Abajo, F.J., Nanoscale control of optical heating in complex plasmonic systems (2010) ACS Nano, 4, pp. 709-716
  • Govorov, A.O., Richardson, H.H., Generating heat with metal nanoparticles (2007) Nano Today, 2, pp. 30-38
  • Liu, X., Enhanced imaging and accelerated photothermalysis of A549 human lung cancer cells by gold nanospheres (2008) Nanomedicine (Lond), 3, pp. 617-626
  • King, M.D., Khandka, S., Craig, G.A., Mason, M.D., Effect of local heating on the SERS efficiency of optically trapped prismatic nanoparticles (2008) J. Phys. Chem. C, 112, pp. 11751-11757

Citas:

---------- APA ----------
Caldarola, M., Albella, P., Cortés, E., Rahmani, M., Roschuk, T., Grinblat, G., Oulton, R.F.,..., Maier, S.A. (2015) . Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Communications, 6.
http://dx.doi.org/10.1038/ncomms8915
---------- CHICAGO ----------
Caldarola, M., Albella, P., Cortés, E., Rahmani, M., Roschuk, T., Grinblat, G., et al. "Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion" . Nature Communications 6 (2015).
http://dx.doi.org/10.1038/ncomms8915
---------- MLA ----------
Caldarola, M., Albella, P., Cortés, E., Rahmani, M., Roschuk, T., Grinblat, G., et al. "Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion" . Nature Communications, vol. 6, 2015.
http://dx.doi.org/10.1038/ncomms8915
---------- VANCOUVER ----------
Caldarola, M., Albella, P., Cortés, E., Rahmani, M., Roschuk, T., Grinblat, G., et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 2015;6.
http://dx.doi.org/10.1038/ncomms8915