Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Patagonian steppe - a massive rain-shadow on the lee side of the southern Andes - is assumed to have evolved ∼15-12ǎ €‰Myr as a consequence of the southern Andean uplift. However, fossil evidence supporting this assumption is limited. Here we quantitatively estimate climatic conditions and plant richness for the interval ∼10-6ǎ €‰Myr based on the study and bioclimatic analysis of terrestrially derived spore-pollen assemblages preserved in well-constrained Patagonian marine deposits. Our analyses indicate a mesothermal climate, with mean temperatures of the coldest quarter between 11.4ǎ €‰°C and 16.9ǎ €‰°C (presently ∼3.5ǎ €‰°C) and annual precipitation rarely below 661ǎ €‰mm (presently ∼200ǎ €‰mm). Rarefied richness reveals a significantly more diverse flora during the late Miocene than today at the same latitude but comparable with that approximately 2,000ǎ €‰km further northeast at mid-latitudes on the Brazilian coast. We infer that the Patagonian desertification was not solely a consequence of the Andean uplift as previously insinuated.© 2014 Macmillan Publishers Limited. All rights reserved.

Registro:

Documento: Artículo
Título:Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift
Autor:Palazzesi, L.; Barreda, V.D.; Cuitiño, J.I.; Guler, M.V.; Tellería, M.C.; Ventura Santos, R.
Filiación:Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Angel Gallardo 470 (C1405DJR), Buenos Aires, Argentina
Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom
Universidad de Buenos Aires, Departamento de Ciencias Geológicas, Intendente Güiraldes 2160 (C1428EHA), Buenos Aires, Argentina
Universidad Nacional Del sur, Departamento de Geología, San Juan 670 (8000) Bahía Blanca, Buenos Aires, Argentina
Laboratorio de Sistemática y Biología Evolutiva (LASBE), Museo de la Plata, Paseo del Bosque s/n (1900) La Plata, Buenos Aires, Argentina
Universidade de Brasília, Instituto de Geociências, Campus Universitário Darcy Ribeiro, Brasília - DF CEP 70910-900, Brazil
Palabras clave:bioclimatology; desertification; fossil record; paleoecology; pollen; precipitation (climatology); quantitative analysis; species richness; steppe; uplift; article; Cyperaceae; desertification; fern; flora; fossil; fossil pollen; grain; latitude; Malpighiaceae; nonhuman; paleoclimate; plant; precipitation; Prosopis; shrub; soil; species; temperature; tree; Upper Miocene; Andes; Patagonia; Argentina; Climate; Desert Climate; Fossils; Phylogeny; Pollen; Temperature
Año:2014
Volumen:5
DOI: http://dx.doi.org/10.1038/ncomms4558
Título revista:Nature Communications
Título revista abreviado:Nat. Commun.
ISSN:20411723
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v5_n_p_Palazzesi

Referencias:

  • Graham, A., The Andes: A geological overview from a biological perspective (2009) Ann. Mo. Bot. Gard, 96, pp. 371-385
  • Hoorn, C., Mosbrugger, V., Mulch, A., Antonelli, A., Biodiversity from mountain building Nat. Geosci, 6 (154), p. 2013
  • Hoorn, C., Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity Science, 330 (927-931), p. 2010
  • Jaramillo, C., (2010) Amazonia Landscape and Species Evolution, pp. 317-334. , (eds Hoorn, M. C. & Wesselingh, F. P.Wiley-Blackwell
  • Blisniuk, P.M., Stern, L.A., Chamberlain, C.P., Idleman, B., Zeitler, P.K., Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes (2005) Earth and Planetary Science Letters, 230 (1-2), pp. 125-142. , DOI 10.1016/j.epsl.2004.11.015, PII S0012821X04006971
  • Ramos, V.A., Ghiglione, M.C., The Late Cenozoic of Patagonia and Tierra del Fuego (2008) Developments in Quaternary Sciences, pp. 57-71. , ed Rabassa, J.Elsevier B.V
  • Guillaume, B., Martinod, J., Husson, L., Roddaz, M., Riquelme, R., Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction? (2009) Tectonics, 28, pp. TC2009
  • Panza, J.L., (2002) Geolog?a y Recursos Naturales de Santa Cruz, pp. 259-284. , ed Haller, M. (Relatorio del XV Congreso Geologico Argentino
  • Mancini, M.V., Prieto, A.R., Paez, M.M., Schäbitz, F., Late Quaternary vegetation and climate of Patagonia (2008) Dev. Quaternary Sci, 11, pp. 351-367
  • Paez, M.M., Schabitz, F., Stutz, S., Modern pollen-vegetation and isopoll maps in southern Argentina (2001) Journal of Biogeography, 28 (8), pp. 997-1021. , DOI 10.1046/j.1365-2699.2001.00616.x
  • Barreda, V., Palazzesi, L., Patagonian vegetation turnovers during the paleogene-early neogene: Origin of arid-adapted floras (2007) Botanical Review, 73 (1), pp. 31-50. , DOI 10.1663/0006-8101(2007)73[31:PVTDTP]2.0.CO;2
  • Barreda, V.D., Palazzesi, L., Response of plant diversity to Miocene forcing events: The case of Patagonia Ann. Missouri Bot. Gard., , in the press
  • Zachos, J., Pagani, H., Sloan, L., Thomas, E., Billups, K., Trends, rhythms, and aberrations in global climate 65 Ma to present (2001) Science, 292 (5517), pp. 686-693. , DOI 10.1126/science.1059412
  • Palazzesi, L., Barreda, V., Major vegetation trends in the Tertiary of Patagonia (Argentina): A qualitative paleoclimatic approach based on palynological evidence (2007) Flora: Morphology, Distribution, Functional Ecology of Plants, 202 (4), pp. 328-337. , DOI 10.1016/j.flora.2006.07.006, PII S0367253007000333
  • Brea, M., Zucol, A.F., Iglesias, A., (2012) Paleobiology in Patagonia. Reconstructing A High-Latitude Paleocommunity in the Early Miocene Climatic Optimum, pp. 104-128. , eds Vizca?no, S. F., Kay, R. F. & Bargo, M. S
  • Dozo, M.T., Late Miocene continental biota in Northeastern Patagonia (Pen?nsula Valdes, Chubut, Argentina) Palaeogeogr Palaeoclimatol. Palaeoecol, 297 (100-109), p. 2010
  • Martinez, S., Del Rio, C.J., Late Miocene molluscs from the southwestern Atlantic Ocean (Argentina and Uruguay): A palaeobiogeographic analysis (2002) Palaeogeography, Palaeoclimatology, Palaeoecology, 188 (3-4), pp. 167-187. , PII S0031018202005515
  • Bradshaw, C.D., The relative roles of CO2 and palaeogeography in determining Late Miocene climate: Results from a terrestrial model-data comparison Climate Past Discuss, 8 (715-786), p. 2012
  • Carmona, N.B., Buatois, L.A., Ponce, J.J., Mangano, M.G., Ichnology and sedimentology of a tide-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: Trace-fossil distribution and response to environmental stresses. Palaeogeogr. Palaeoclimatol (2009) Palaeoecol, (273), pp. 75-86
  • Scasso, R.A., Dozo, M.T., Cuitino, J.I., Bouza, P., Meandering tidal-fluvial channels and lag concentration of terrestrial vertebrates in the fluvial-tidal transition of an ancient estuary in Patagonia Lat. Am. J. Sedimentol. Basin Anal, 19 (27-45), p. 2012
  • Bellosi, E.S., Gonzalez, M.G., (2010) The Paleontology of Gran Barranca, pp. 293-305. , eds Madden, R. H., Carlini, A. A., Vucetich, M. G. & Kay, R. F
  • Ameghino, F., Les formations sedimentaires du Cretace superieur et du Tertiaire de Patagonie avec un parallele entre leurs faunes mammalogiques et celles de l'ancien continent (1906) Anales Del Museo Nacional de Historia Natural, 15, pp. 1-568
  • Feruglio, E., (1949) Descripcion Geologica de la Patagonia, 3. , Buenos Aires Direccion General de Yacimientos Petrol?feros Fiscales
  • Palazzesi, L., Barreda, V., Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia Nat. Commun., 3 (1294), p. 2012
  • Zavala, C., Freije, R.H., On the understanding of aeolian sequence stratigraphy: An example from Miocene-Pliocene deposits in Patagonia, Argentina (2001) Rivista Italiana di Paleontologia e Stratigrafia, 107 (2), pp. 251-264
  • Thomson, S.N., Glaciation as a destructive and constructive control on mountain building Nature, 467 (313-317), p. 2010
  • Pagani, M., Freeman, K.H., Arthur, M.A., Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses (1999) Science, 285 (5429), pp. 876-879. , DOI 10.1126/science.285.5429.876
  • McKay, R., Antarctic and Southern Ocean influences on Late Pliocene global cooling Proc. Natl Acad. Sci. USA, 109 (6423-6428), p. 2012
  • Rabassa, J., Coronato, A., Martinez, O., Late Cenozoic glaciations in Patagonia and Tierra del Fuego: An updated review Biol. J. Linn. Soc, 103 (316-335), p. 2011
  • Martinez-Garcia, A., Southern Ocean dust-climate coupling over the past four million years Nature, 476 (312-315), p. 2011
  • Fujioka, T., Chappell, J., Fifield, L.K., Rhodes, E.J., Australian desert dune fields initiated with Pliocene-Pleistocene global climatic shift (2009) Geology, 37, pp. 51-54
  • Hartley, A.J., Chong, G., Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America (2002) Geology, 30 (1), pp. 43-46
  • Scasso, R.A., McArthur, J.M., Del Rio, C.J., Martinez, S., Thirlwall, M.F., 87Sr/86Sr late miocene age of fossil molluscs in the 'entrerriense' of the Valdés Peninsula (Chubut, Argentina) (2001) Journal of South American Earth Sciences, 14 (3), pp. 319-329. , DOI 10.1016/S0895-9811(01)00032-3, PII S0895981101000323
  • Guler, M.V., Guerstein, G.R., Malumian, N., Bioestratigraf?a de la Formacion Barranca Final, Neogeno de la Cuenca del Colorado, Argentina (2002) Ameghiniana, 39, pp. 103-110
  • Del Rio, C.J., Martinez, S.A., Scasso, R.A., Nature of origin of spectacular marine miocene shell beds of northeastern patagonia (Argentina): Paleoecological and bathymetric significance (2001) Palaios, 16 (1), pp. 3-25
  • Cuitino, J.I., Pimentel, M.M., Ventura Santos, R., Scasso, R.A., High resolution isotopic ages for the 'Patagoniense' transgression in southwest Patagonia: Stratigraphic implications J. South Am. Earth Sci, 38 (110-122), p. 2012
  • McArthur, J.M., Howarth, R.J., Bailey, T.R., Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age (2001) Journal of Geology, 109 (2), pp. 155-170. , DOI 10.1086/319243
  • Traverse, A., (2007) Paleopalynology 2nd Edn, 813. , Netherlands Springer
  • Miller, A.I., Foote, M., Calibrating the Ordovician radiation of marine life: Implications for Phanerozoic diversity trends (1996) Paleobiology, 22, pp. 304-309
  • Sanders, H.L., Marine benthic diversity: A comparative study (1968) Am. Nat, 102, pp. 243-282
  • Oksanen, J., The vegan package (2008) Community Ecology Package, , http://www.R-project.org
  • Hoorn, C., Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study (1993) Palaeogeogr. Palaeoclimatol. Palaeoecol, 105, pp. 267-309
  • Barreda, V.D., Bioestratigrafia de polen y esporas de la Formacion Chenque, Oligoceno Tardio?-Mioceno de las provincias de Chubut y Santa Cruz, Patagonia, Argentina (1996) Ameghiniana, 33, pp. 35-56
  • Jeske-Pieruschka, V., Fidelis, A., Bergamin, R.S., Velez, E., Araucaria forest dynamics in relation to fire frequency in southern Brazil based on fossil and modern pollen data Rev. Palaeobot. Palynol, 160 (53-65), p. 2010
  • Marcos, M.A., Mancini, M.V., Modern pollen and vegetation relationships in Northeastern Patagonia (Golfo San Mat?as, R?o Negro) Rev. Palaeobot. Palynol., 171 (19-26), p. 2012
  • Grimm, G.W., Denk, T., Reliability and resolution of the coexistence approach-a revalidation using modern-day data Rev. Palaeobot. Palynol, 172 (33-47), p. 2012
  • Nix, H.A., (1991) Rainforest Animals: Atlas of Vertebrates Endemic to Australia's Wet Tropics, pp. 11-39. , (eds Nix, H. A. & Switzer, M. (Australian National Parks and Wildlife Service
  • Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., Dismo: Species Distribution Modeling, 2013. , http://cran.r-project.org/web/packages/dismo/dismo.pdf, R package version 0.8-17
  • Araujo, M.B., Peterson, A.T., Uses and misuses of bioclimatic envelope modelling (2012) Ecology, 93, pp. 1527-1539

Citas:

---------- APA ----------
Palazzesi, L., Barreda, V.D., Cuitiño, J.I., Guler, M.V., Tellería, M.C. & Ventura Santos, R. (2014) . Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature Communications, 5.
http://dx.doi.org/10.1038/ncomms4558
---------- CHICAGO ----------
Palazzesi, L., Barreda, V.D., Cuitiño, J.I., Guler, M.V., Tellería, M.C., Ventura Santos, R. "Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift" . Nature Communications 5 (2014).
http://dx.doi.org/10.1038/ncomms4558
---------- MLA ----------
Palazzesi, L., Barreda, V.D., Cuitiño, J.I., Guler, M.V., Tellería, M.C., Ventura Santos, R. "Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift" . Nature Communications, vol. 5, 2014.
http://dx.doi.org/10.1038/ncomms4558
---------- VANCOUVER ----------
Palazzesi, L., Barreda, V.D., Cuitiño, J.I., Guler, M.V., Tellería, M.C., Ventura Santos, R. Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nat. Commun. 2014;5.
http://dx.doi.org/10.1038/ncomms4558