Artículo

Eberhardt, M.; Dux, M.; Namer, B.; Miljkovic, J.; Cordasic, N.; Will, C.; Kichko, T.I.; De La Roche, J.; Fischer, M.; Suárez, S.A.; Bikiel, D.; Dorsch, K.; Leffler, A.; Babes, A.; Lampert, A.; Lennerz, J.K.; Jacobi, J.; Martí, M.A. (...) Filipovic, M.R. "H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway" (2014) Nature Communications. 5
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H 2 S. We show that H 2 S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H 2 S-evoked vasodilatatory effects largely depend on NO production and activation of HNO-TRPA1-CGRP pathway. We propose that this neuroendocrine HNO-TRPA1-CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system. © 2014 Macmillan Publishers Limited. All rights reserved.

Registro:

Documento: Artículo
Título:H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway
Autor:Eberhardt, M.; Dux, M.; Namer, B.; Miljkovic, J.; Cordasic, N.; Will, C.; Kichko, T.I.; De La Roche, J.; Fischer, M.; Suárez, S.A.; Bikiel, D.; Dorsch, K.; Leffler, A.; Babes, A.; Lampert, A.; Lennerz, J.K.; Jacobi, J.; Martí, M.A.; Doctorovich, F.; Högestätt, E.D.; Zygmunt, P.M.; Ivanovic-Burmazovic, I.; Messlinger, K.; Reeh, P.; Filipovic, M.R.
Filiación:Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
Institute of Physiology and Pathophysiology Friedrich, Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, United Kingdom
Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070 Ulm, Germany
Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
Palabras clave:calcitonin gene related peptide; hydrogen sulfide; nitric oxide; nitroxyl; transient receptor potential channel A1; unclassified drug; calcitonin gene related peptide; hydrogen sulfide; nitric oxide; nitrogen oxide; nitroxyl; transient receptor potential channel; Trpa1 protein, mouse; amino terminal sequence; animal cell; article; blood pressure; blood vessel tone; calcium transport; cerebrospinal fluid; controlled study; disulfide bond; electrophilicity; female; human; immunoprecipitation; immunoreactivity; male; mast cell degranulation; matrix assisted laser desorption ionization time of flight mass spectrometry; mean arterial pressure; mouse; nonhuman; regulatory mechanism; sensory nerve cell; signal transduction; spinal ganglion; vasodilatation; animal; aorta; brain stem; drug effects; genetics; immunohistochemistry; in vitro study; knockout mouse; mass spectrometry; metabolism; signal transduction; trigeminus ganglion; Animals; Aorta; Brain Stem; Calcitonin Gene-Related Peptide; Humans; Hydrogen Sulfide; Immunohistochemistry; In Vitro Techniques; Mice; Mice, Knockout; Nitric Oxide; Nitrogen Oxides; Signal Transduction; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Transient Receptor Potential Channels; Trigeminal Ganglion
Año:2014
Volumen:5
DOI: http://dx.doi.org/10.1038/ncomms5381
Título revista:Nature Communications
Título revista abreviado:Nat. Commun.
ISSN:20411723
CAS:calcitonin gene related peptide, 83652-28-2; hydrogen sulfide, 15035-72-0, 7783-06-4; nitric oxide, 10102-43-9; nitrogen oxide, 11104-93-1; Calcitonin Gene-Related Peptide; Hydrogen Sulfide; Nitric Oxide; Nitrogen Oxides; nitroxyl; Transient Receptor Potential Channels; Trpa1 protein, mouse
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v5_n_p_Eberhardt

Referencias:

  • Fukuto, J.M., Switzer, C.H., Miranda, K.M., Wink, A.D., Nitroxyl (HNO): Chemistry, biochemistry, and pharmacology (2005) Annu. Rev. Pharmacol. Toxicol., 45, pp. 335-355
  • Fukuto, J.M., Carrington, S.J., HNO signalling mechanisms (2011) Antioxid. Redox. Signal., 14, pp. 1649-1657
  • Paolocci, N., Positive inotropic and lusitropic effects of HNO/NO-in failing hearts: Independence from beta-adrenergic signaling (2003) Proc. Natl Acad. Sci. USA, 100, pp. 5537-5542
  • Paolocci, N., Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling (2001) Proc. Natl Acad. Sci. USA, 98, pp. 10463-10468
  • Favaloro, J.L., Kemp-Harper, B.K., The nitroxyl anion (HNO) is a potent dilator of rat coronary vasculature (2007) Cardiovasc. Res., 73, pp. 587-596
  • Irvine, J.C., Favaloro, J.L., Widdop, R.E., Kemp-Harper, B.K., Nitroxyl anion (HNO) donor, Angeli's salt, does not develop tolerance in rat isolated aortae (2007) Hypertension, 49, pp. 1-8
  • Brain, S.D., Grant, A.D., Vascular actions of calcitonin gene-related peptide and adrenomedullin (2004) Physiol. Rev., 84, pp. 903-934
  • Dux, M., Santha, P., Jancso, G., Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat (2003) J. Physiol., 552, pp. 859-867
  • Spitzer, M.J., Reeh, P.W., Sauer, S.K., Mechanisms of potassium-and capsaicin-induced axonal calcitonin gene-related peptide release: Involvement of L-and T-type calcium channels and TRPV1 but not sodium channels (2008) Neuroscience, 151, pp. 836-842
  • Yang, G., H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma-lyase (2008) Science, 322, pp. 587-590
  • Mustafa, A.K., Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels (2011) Circ. Res., 109, pp. 1259-U1169
  • Li, L., Rose, P., Moore, P.K., Hydrogen sulfide and cell signaling (2011) Annu. Rev. Pharmacol. Toxicol., 51, pp. 169-187
  • Abe, K., Kimura, H., The possible role of hydrogen sulfide as an endogenous neuromodulator (1996) J. Neurosci., 16, pp. 1066-1071
  • Coletta, C., Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation (2012) Proc. Natl Acad. Sci. USA, 109, pp. 9161-9166
  • Yong, Q.C., Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide (2011) Antioxid. Redox. Signal., 14, pp. 2081-2091
  • Filipovic, M.R., Chemical characterization of the smallest S-Nitrosothiol, HSNO; Cellular cross-talk of H2S and S-Nitrosothiols (2012) J. Am. Chem. Soc., 134, pp. 12016-12027
  • Lancaster Jr., J.R., Nitroxidative, nitrosative, and nitrative stress: Kinetic predictions of reactive nitrogen species chemistry under biological conditions (2006) Chem. Res. Toxicol., 19, pp. 1160-1174
  • Wink, D.A., Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects ofintermediates generated in the NO/O2 reaction (1994) Chem. Res. Toxicol., 7, pp. 519-525
  • Streng, T., Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder (2008) Eur. Urol., 53, pp. 391-399
  • Bautista, D.M., Pungent products from garlic activate the sensory ion channel TRPA1 (2005) Proc. Natl Acad. Sci. USA, 102, pp. 12248-12252
  • Zygmunt, P.M., Trpa, D.H.E., (2014) Handb. Exp. Pharmacol., 222, pp. 583-630
  • Eberhardt, M.J., Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1) a possible mechanism of metabolic neurophaties (2012) J. Biol. Chem., 287, pp. 28291-28306
  • Hinman, A., Chuang, H.H., Bautista, D.M., Julius, D., TRP channel activation by reversible covalent modification (2006) Proc. Natl Acad. Sci. USA, 103, pp. 19564-19568
  • Macpherson, L.J., Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines (2007) Nature, 445, pp. 541-545
  • Miranda, K.M., Mechanism of aerobic decomposition of Angeli's salt (sodium trioxodinitrate) at physiological pH (2005) J. Am. Chem. Soc., 127, pp. 722-731
  • Everaerts, W., The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil (2011) Curr. Biol., 21, pp. 316-321
  • Ebersberger, A., Averbeck, B., Messlinger, K., Reeh, P.W., Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro (1999) Neurosci., 89, pp. 901-907
  • Namer, B., Seifert, F., Handwerker, H.O., Maihofner, C., TRPA1 and TRPM8 activation in humans: Effects of cinnamaldehyde and menthol (2005) Neuroreport, 16, pp. 955-959
  • Suárez, S.A., Bikiel, D.A., Wetzler, D., Mart́, M.A., Doctorovich, F., Time-resolved e electrochemical quantification of azanone (HNO) at low nanomolar level (2013) Anal. Chem., 85, pp. 10262-10269
  • Rosenthal, J., Lippard, S.J., Direct detection of nitroxyl in aqueous solution using a tripodal copper(II) BODIPY complex (2010) J. Am. Chem. Soc., 132, pp. 5536-5537
  • Cuevasanta, E., Denicola, A., Alvarez, B., Moller, M.N., Solubility and permeation of hydrogen sulfide in lipid membranes (2012) PLoS ONE, 7, pp. e34562
  • Poole, D.P., Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine (2011) Gastroenterology, 141, pp. 565-656
  • Koenitzer, J.R., Hydrogen sulfide mediates vasoactivity in an O2-dependent manner (2007) Am. J. Physiol. Heart Circ. Physiol., 292, pp. H1953-H1960
  • Hourihan, J.M., Kenna, J.G., Hayes, J.D., The gasotransmitter hydrogen sulfide induces Nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulphide bond between Cys-226 and Cys-613 (2013) Antioxid. Redox. Signal., 19, pp. 465-481
  • Nesuashvili, L., Hadley, S.H., Bahia, P.K., Taylor-Clark, T.E., Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels (2013) Mol. Pharmacol., 83, pp. 1007-1019
  • Andersson, D.A., Gentry, C., Moss, S., Bevan, S., Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress (2008) J. Neurosci., 28, pp. 2485-2494
  • Zhang, D., Detection of protein S-Sulfhydration via a tag-switch technique (2014) Angew. Chem. Int. Ed., 53, pp. 575-581
  • Tang, G., H2S is an endothelium-derived hyperpolarizing factor (2013) Antioxid. Redox. Signal., 19, pp. 1634-1646
  • Zygmunt, P.M., Ryman, T., Högestätt, E.D., Regional differences in endothelium-dependent relaxation in the rat: Contribution of nitric oxide and nitric oxide-independent mechanisms (1995) Acta Physiol. Scand., 155, pp. 257-266
  • Zygmunt, P.M., Andersson, D.A., Hogestatt, E.D., Delta 9-tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism (2002) J. Neuorosci., 22, pp. 4720-4727
  • Vitvitsky, V., Kabil, O., Banerjee, R., High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations (2012) Antioxid. Redox. Signal., 17, pp. 22-31
  • Schmidt, H.H., No.NO from NO synthase (1996) Proc. Natl Acad. Sci. USA, 93, pp. 14492-14497
  • Hobbs, A.J., Fukuto, J.M., Ignarro, L.J., Formation of free nitric-oxide from L-Arginine by nitric-oxide synthase-direct enhancement of generation by superoxide-dismutase (1994) Proc. Natl Acad. Sci. USA, 91, pp. 10992-10996
  • Rusche, K.M., Spiering, M.M., Marletta, M.A., Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase (1998) Biochemistry, 37, pp. 15503-15512
  • Andrews, K.L., A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries (2009) Br. J. Pharmacol, 157, pp. 540-550
  • Ellis, A., Li, C.G., Rand, M.J., Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta (2000) Br. J. Pharmacol., 129, pp. 315-322
  • Wanstall, J.C., Jeffery, T.K., Gambino, A., Lovren, F., Triggle, C.R., Vascular smooth muscle relaxation mediated by nitric oxide donors: A comparison with acetylcholine, nitric oxide and nitroxyl ion (2001) Br. J. Pharmacol., 134, pp. 463-472
  • Li, C.G., Karagiannis, J., Rand, M.J., Comparison of the redox forms of nitrogen monoxide with the nitrergic transmitter in the rat anococcygeus muscle (1999) Br. J. Pharmacol., 127, pp. 826-834
  • Yong, Q.C., Hu, L.F., Wang, S.H., Huang, D.J., Bian, J.S., Hydrogen sulfide interacts with nitric oxide in the heart: Possible involvement of nitroxyl (2010) Cardiovasc. Res., 88, pp. 482-491
  • Filipovic, M.R., Beyond H2S and NO Interplay: Hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO (2013) J. Med. Chem., 56, pp. 1499-1508
  • Miyamoto, R., Otsuguro, K., Ito, S., Time-and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat DRG neurons (2011) Neurosci. Lett., 499, pp. 137-142
  • Andersson, D.A., Gentry, C., Bevan, S., TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide (2012) PLoS ONE, 7, pp. e46917
  • Pozsgai, G., The role of transient receptor potential ankyrin 1 (TRPA1) receptor activation in hydrogen-sulphide-induced CGRP-release and vasodilation (2012) Eur. J. Pharmacol., 689, pp. 56-64
  • Krueger, D., Signaling mechanisms involved in the intestinal pro-secretory actions of hydrogen sulfide (2010) Neurogastroenterol. Motil., 22, pp. 1224-1231
  • Kimura, Y., Polysulfides are possible H2S-derived signaling molecules in rat brain (2013) FASEB J., 27, pp. 2451-2457
  • Miljkovic, J., Li, Kenkel, I., Ivanović-Burmazović, I., Filipovic, M.R., Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S (2013) Angew. Chem. Int. Ed., 52, pp. 12061-12064
  • Chakravarty, P., CGRP and adrenomedullin binding correlates with transcript levels for calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) in rat tissues (2000) Brit. J. Pharmacol., 30, pp. 189-195
  • Saetrum Opgaard, O., Hasbak, P., De Vries, R., Saxena, P.R., Edvinsson, L., Positive inotropy mediated via CGRP receptors in isolated human myocardial trabeculae (2000) Europ. J. Pharmacol., 397, pp. 373-382
  • Al-Rubaiee, M., Inotropic and lusitropic effects of calcitonin gene-related peptide in the heart (2013) Am. J. Physiol. Heart Circ. Physiol., 304, pp. H1525-H1537
  • Katori, T., Calcitonin gene-related peptide in vivo positive inotropy is attributable to regional sympatho-stimulation and is blunted in congestive heart failure (2005) Circ. Res., 96, pp. 234-243
  • Wood, K.C., Picomolar nitric oxide signals from central neurons recorded using ultrasensitive detector cells (2011) J. Biol. Chem., 286, pp. 43172-43181
  • Wang, L.W., Cvetkov, T.L., Chance, M.R., Moiseenkova-Bell, V.Y., Identification of in vivo disulphide conformation of TRPA1 ion channel (2012) J. Biol. Chem., 287, pp. 6169-6176
  • Goadsby, P.J., Edvinsson, L., Ekman, R., Vasoactive peptide release in the extracerebral circulation of humans during migraine headache (1990) Ann. Neurol., 28, pp. 183-187
  • Sarchielli, P., Alberti, A., Codini, M., Floridi, A., Gallai, V., Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks (2000) Cephalalgia, 20, pp. 907-918
  • Carlier, E.W., Allyl isothiocyanate: Some aspects of its physiological action (1909) Biochem. J., 4, pp. 107-116
  • Pozsgai, G., Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo (2010) Cardiovasc. Res., 87, pp. 760-768
  • Bodkin, J.V., Brain, S.D., Transient receptor potential ankyrin 1: Emerging pharmacology and indications for cardiovascular biology (2011) Acta Physiol. (Oxf), 203, pp. 87-98
  • Burger, W., Burge, M.J., (2009) Principles of Digital Image Processing Ch. 2, , Springer-Verlag London Limited
  • Xu, D., Zhang, J., Roy, A., Zhang, Y., Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement (2011) Proteins, 79, pp. 147-160
  • Lennerz, J.K., Calcitonin receptor-like receptor (CLR), receptor activitymodifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution (2008) J. Comp. Neurol., 507, pp. 1277-1299

Citas:

---------- APA ----------
Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., Kichko, T.I.,..., Filipovic, M.R. (2014) . H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nature Communications, 5.
http://dx.doi.org/10.1038/ncomms5381
---------- CHICAGO ----------
Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., et al. "H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway" . Nature Communications 5 (2014).
http://dx.doi.org/10.1038/ncomms5381
---------- MLA ----------
Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., et al. "H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway" . Nature Communications, vol. 5, 2014.
http://dx.doi.org/10.1038/ncomms5381
---------- VANCOUVER ----------
Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., et al. H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat. Commun. 2014;5.
http://dx.doi.org/10.1038/ncomms5381