Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper addresses a new numerical study of the near electromagnetic coupling between two small, metallic nanowires under plane-wave illumination. The forces and torques induced give a different point of view of the interaction. The analysis of these near-field, mechanical observables is based entirely on the plasmon hybridization model, with the help of an adequate correlation with far fields. Although several studies of the opto-mechanical inductions have been done, unexpected features of the movement are obtained. 'Coordinated' spin for the wires are found, in addition to binding or repulsion forces between the wires and scattering forces. For heterodimers, also orbital torques are obtained. The binding and rotation of the nanowires as well as orbital torques are strongly dependent on the plasmonic excitations of the system. They identify uniquely the surface plasmons. In particular, dark modes can be optically detected without using evanescent fields. The optical forces and torques are calculated exactly by Maxwell stress tensor. 'Realistic' infinite nanowires of silver and gold are simulated by a size correction in bulk dielectric function. Thus, the importance of this correction on the mechanical results is also studied. The results can contribute to the design of devices for real observation/detection of surface plasmons. The spectra of forces, and specially of torques, show more resolved resonances because overlapping effects are not as present as in far-field calculations. The spinning of wires found and the analysis made could open new directions of studies and applications of dimers. © 2016 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Optical interaction between small plasmonic nanowires: A perspective from induced forces and torques
Autor:Ekeroth, R.M.A.
Filiación:Instituto de Física de Buenos Aires, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón i, Buenos Aires, C1428EHA, Argentina
Palabras clave:dimmers; electromagnetic interaction; nanowires; optical forces; plasmonics; size effects; torques; Bins; Dielectric materials; Evanescent fields; Nanowires; Torque; Wire; dimmers; Electromagnetic interactions; Optical force; Plasmonics; Size effects; Plasmons
Año:2016
Volumen:18
Número:8
DOI: http://dx.doi.org/10.1088/2040-8978/18/8/085003
Título revista:Journal of Optics (United Kingdom)
Título revista abreviado:J. Opt.
ISSN:20408978
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20408978_v18_n8_p_Ekeroth

Referencias:

  • Lamothe, E., Lévêque, G., Martin, O.J.F., Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes (2007) Opt. Express, 15, pp. 9631-9644. , 9631-44
  • Raziman, T.V., Wolke, R.J., Martin, O.J.F., Optical forces in nanoplasmonic systems: How do they work, what can they be useful for? (2015) Faraday Discuss., 178, pp. 421-434. , 421-34
  • Nordlander, P., Plasmon hybridization in nanoparticle dimers (2004) Nano Lett., 4, pp. 899-903. , 899-903
  • Khlebtsov, B., Melnikov, A., Zharov, V., Khlebtsov, N., Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches (2006) Nanotechnology, 17 (5), pp. 1437-1445. , 1437-45
  • Park, W., Optical interactions in plasmonic nanostructures (2014) Nano Convergence, 1, pp. 1-27. , 1-27
  • Bian, Y., Gong, Q., Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for high-performance optical waveguiding at sub-diffraction-limited scale (2014) Sci. Rep., 4, p. 6617
  • Aubry, A., Lei, D.Y., Maier, S.A., Pendry, J.B., Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach (2011) ACS Nano, 5, pp. 3293-3308. , 3293-308
  • Rockstuhl, C., Salt, M.G., Herzig, H.P., Analizing the scattering properties of coupled metallic nanoparticles (2004) J. Opt. Soc. Am., 21, pp. 1761-1768. , 1761-8
  • Kottmann, J.P., Martin, O.J.F., Plasmon resonant coupling in metallic nanowires (2001) Opt. Express, 8, pp. 655-663. , 655-63
  • Li, W., Camargo, P.H.C., Lu, X., Xia, Y., Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced raman scattering (2009) Nano Lett., 9, pp. 485-490. , 485-90
  • Li, W., Etching and dimerization: A simple and versatile route to dimers of silver nanospheres with a range of sizes (2010) Angew. Chem., Int. Ed. Engl., 49, pp. 164-168. , 164-8
  • Wang, H., Halas, N.J., Plasmonic nanoparticle heterodimers in a semiembedded geometry fabricated by stepwise upright assembly (2006) Nano Lett., 6, pp. 2945-2948. , 2945-8
  • Alber, I., (2012) Synthesis and Plasmonic Properties of Metallic Nanowires and Nanowire Dimers, , (www.ub.uni-heidelberg.de/archiv/14035)
  • Tong, L., Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well (2011) Nano Lett., 11, pp. 4505-4508. , 4505-8
  • Aćimović, S.S., Kreuzer, M.P., González, M.U., Quidant, R., Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing (2009) ACS Nano, 3, pp. 1231-1237. , 1231-7
  • Xu, H., Bjerneld, E.J., Käll, M., Börjesson, L., Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering (1999) Phys. Rev. Lett., 83, pp. 4357-4361. , 4357-61
  • Huang, F., Baumberg, J.J., Actively tuned plasmons on elastomerically driven au nanoparticle dimers (2010) Nano Lett., 10, pp. 1787-1792. , 1787-92
  • Rong, G., Wang, H., Skewis, L.R., Reinhard, B.M., Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy (2008) Nano Lett., 8, pp. 3386-3393. , 3386-93
  • Thacker, V.V., DNA origami based assembly of gold nanoparticle dimers for surface-enhanced raman scattering (2014) Nat. Commun., 5, pp. 1-7. , 1-7
  • Fraire, J.C., Toward the design of highly stable small colloidal sers substrates with supramolecular host-guest interactions for ultrasensitive detection (2015) J. Phys. Chem., 119, pp. 8876-8888. , 8876-88
  • Scholl, J.A., García-Etxarri, A., Koh, A.L., Dionne, J.A., Observation of quantum tunneling between two plasmonic nanoparticles (2013) Nano Lett., 13, pp. 564-569. , 564-9
  • Sun, Y., Interfaced metal heterodimers in the quantum size regime (2013) Nano Lett., 13, pp. 3958-3964. , 3958-64
  • Teperik, T.V., Nordlander, P., Aizpurua, J., Borisov, A.G., Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers (2013) Opt. Express, 21, pp. 27306-27325. , 27306-25
  • Maragò, O.M., Optical trapping and manipulation of nanostructures (2013) Nat. Nanotechnol., 8, pp. 807-819. , 807-19
  • Dholakia, K., Zemánek, P., Colloquium: Gripped by light: Optical binding (2010) Rev. Mod. Phys., 82, pp. 1767-1791. , 1767-91
  • Sepulveda, B., Alegret, J., Käll, M., Nanometric control of the distance between plasmonic nanoparticles using optical forces (2007) Opt. Express, 15, pp. 14914-14920. , 14914-20
  • Tong, L., Miljković, V.D., Käll, M., Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces (2010) Nano Lett., 10, pp. 268-273. , 268-73
  • Dienerowitz, M., Mazilu, M., Dhokalia, K., Optical manipulation of nanoparticles: A review (2008) J. Nanophoton., 2, pp. 1-30. , 1-30
  • Gunnarsson, L., Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions (2005) J. Phys. Chem., 109, pp. 1079-1087. , 1079-87
  • Miljković, V.D., Optical forces in nanoparticle dimers (2010) J. Phys. Chem., 114, pp. 7474-7479. , 7474-9
  • Scaffardi, L.B., Lester, M., Skigin, D., Tocho, J.O., Optical extinction spectroscopy used to characterize metallic nanowires (2007) Nanotechnology, 18 (31)
  • Coronado, E., Schatz, G., Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach (2003) J. Chem. Phys., 119, p. 3926
  • Kreibig, U., Electronic properties of small silver particles: The optical constants and their temperature dependence (1974) J. Phys. F: Met. Phys., 4 (7), pp. 999-1014. , 999-1014
  • David, C., García De Abajo, F.J., Spatial nonlocality in the optical response of metal nanoparticles (2011) J. Phys. Chem., 115, pp. 19470-19475. , 19470-5
  • David, C., García De Abajo, F.J., Spatial nonlocality in the optical response of metal nanoparticles (2011) J. Phys. Chem., 115, pp. 19470-19475. , 19470-5
  • García De Abajo, F.J., Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides (2008) J. Phys. Chem., 112, pp. 17983-17987. , 17983-7
  • Hallock, A.J., Redmond, P.L., Brus, L.E., Optical forces between metallic nanoparticles (2005) Proc. Natl Acad. Sci. USA, 102, pp. 1280-1284. , 1280-4
  • Zhao, R., Tassin, P., Koschny, T., Soukoulis, C.M., Optical forces in nanowire pairs and metamaterials (2010) Opt. Express, 18, pp. 25665-25676. , 25665-76
  • Zhang, Q., Reversal of optical binding forces by fano resonance in plasmonic nanorod heterodimer (2013) Opt. Express, 21, pp. 6601-6608. , 6601-8
  • Sukhov, S., Shalin, A., Haefner, D., Dogariu, A., Actio et reactio in optical binding (2015) Opt. Express, 23, pp. 247-252. , 247-52
  • Phillips, D.B., Shape-induced force fields in optical trapping (2014) Nat. Photon., 8, pp. 400-405. , 400-5
  • Nome, R.A., Guffey, M.J., Scherer, N.F., Gray, S.K., Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers (2009) J. Phys. Chem., 113, pp. 4408-4415. , 4408-15
  • Raziman, T.V., Martin, O.J.F., Internal optical forces in plasmonic nanostructures (2015) Opt. Express, 23, pp. 20143-20157. , 20143-57
  • Albaladejo, S., Marques, M.I., Sáenz, J.J., Light control of silver nanoparticle's diffusion (2011) Opt. Express, 19, pp. 11471-11478. , 11471-8
  • Grzegorczyk, T.M., Kemp, B.A., Kong, J.A., Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field (2006) J. Opt. Soc. Am., 23, pp. 2324-2330. , 2324-30
  • Demergis, V., Florin, E.L., Ultrastrong optical binding of metallic nanoparticles (2012) Nano Lett., 12, pp. 5756-5760. , 5756-60
  • Novotny, L., Henkel, C., Van der Waals versus optical interaction between metal nanoparticles (2008) Opt. Lett., 33, pp. 1029-1031. , 1029-31
  • Yang, S.-C., Plasmon hybridization in individual gold nanocrystal dimers: Direct observation of bright and dark modes (2010) Nano Lett., 10, pp. 632-637. , 632-7
  • Ji, A., Optical forces and torques on realistic plasmonic nanostructures: A surface integral approach (2014) Opt. Lett., 39, pp. 4699-4701. , 4699-701
  • Madrazo, A., Nieto-Vesperinas, M., Scattering of electromagnetic waves from a cylinder in front of a conducting plane (1995) J. Opt. Soc. Am., 12, p. 1298
  • Abraham Ekeroth, R.M., Lester, M.F., Detection of eccentricity in silver nanotubes by means of induced optical forces and torques (2015) J. Opt., 17, p. 105002
  • Lester, M., Skigin, D., An optical nanoantenna made of plasmonic chain resonators (2011) J. Opt., 13, p. 035105
  • Novotny, L., Hecht, B., (2006) Principles of Nano-Optics, pp. 1-539. , (Cambridge: Cambridge University Press) pp 1-539
  • Abraham Ekeroth, R.M., Lester, M.F., Optical forces on silver homogeneous nanotubes: Study of shell plasmonic interaction (2015) Plasmonics, 10, pp. 989-998. , 989-98
  • Quidant, R., Baffou, G., García De Abajo, F.J., Nanoscale control of optical heating in complex plasmonic systems (2010) ACS Nano, 4, pp. 709-716. , 709-16
  • Kremer, E., Barchiesi, D., Grosges, T., Lamy De La Chapelle, M., Electromagnetic heat-induced in meso-structures: Computation of temperature in metallic dimers (2011) Piers Online, 7, pp. 406-410. , 406-10
  • Palik, E.D., (1985) Handbook of Optical Constants of Solids, 1. , 2nd edn, (Amsterdam: Elsevier)
  • Johnson, P.B., Christy, R.W., Optical constants of the noble metals (1972) Phys. Rev., 6, p. 4370
  • Toscano, G., Plasmonic nanostructures: Local versus nonlocal response (2010) Proc. SPIE, 7757
  • Kittel, C., (2005) Introduction to Solid State Physics, , 8th edn (New York: Wiley)
  • Moroz, A., Electron mean-free path in metal-coated nanowires (2011) J. Opt. Soc. Am., 28, pp. 1130-1138. , 1130-8
  • Maier, S.A., (2007) Plasmonics: Fundamentals and Applications, pp. 1-223. , (Berlin: Springer) pp 1-223
  • Abraham, R.M.E., Lester, M., Scaffardi, L., Schinca, D., Metallic nanotubes characterization via surface plasmon excitation (2011) Plasmonics, 6, pp. 435-444. , 435-44
  • Luo, Y., Surface plasmons and nonlocality. A simple model (2013) Phys. Rev. Lett., 111
  • Nieto Vesperinas, M., Optical torque on small bi-isotropic particles (2015) Opt. Lett., 40, pp. 3021-3024. , 3021-4
  • Chaumet, P.C., Rahmani, A., Electromagnetic force and torque on magnetic and negative-index scatterers (2009) Opt. Express, 17, pp. 2224-2234. , 2224-34
  • Lukýanchuk, B.S., Ternovsky, V., Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field (2006) Phys. Rev., 73, pp. 1-2. , 1-2
  • Wang, Z.B., Energy flow around a small particle investigated by classical mie theory (2004) Phys. Rev., 70, pp. 1-2. , 1-2
  • Berry, M.V., Optical currents (2009) J. Opt. A: Pure Appl. Opt., 11 (9), pp. 1-2. , 1-2
  • Swartzlander, G.A., Jr., Stable optical lift (2011) Nat. Photon., 5, pp. 48-51. , Swartzlander G A Jr et al 48-51
  • Simpson, S.H., Optical lift from dielectric semicylinders (2012) Opt. Lett., 37, pp. 4038-4040. , 4038-40

Citas:

---------- APA ----------
(2016) . Optical interaction between small plasmonic nanowires: A perspective from induced forces and torques. Journal of Optics (United Kingdom), 18(8).
http://dx.doi.org/10.1088/2040-8978/18/8/085003
---------- CHICAGO ----------
Ekeroth, R.M.A. "Optical interaction between small plasmonic nanowires: A perspective from induced forces and torques" . Journal of Optics (United Kingdom) 18, no. 8 (2016).
http://dx.doi.org/10.1088/2040-8978/18/8/085003
---------- MLA ----------
Ekeroth, R.M.A. "Optical interaction between small plasmonic nanowires: A perspective from induced forces and torques" . Journal of Optics (United Kingdom), vol. 18, no. 8, 2016.
http://dx.doi.org/10.1088/2040-8978/18/8/085003
---------- VANCOUVER ----------
Ekeroth, R.M.A. Optical interaction between small plasmonic nanowires: A perspective from induced forces and torques. J. Opt. 2016;18(8).
http://dx.doi.org/10.1088/2040-8978/18/8/085003