Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We investigate the capabilities of an effective non-retarded formalism (ENR) for the exploration and design of nanoparticle composites with specific optical properties. We consider a composite material comprising periodically distributed metallic spheres in a dielectric host matrix. The effective macroscopic dielectric function of the composite medium is obtained by means of the ENR and is used to calculate the electromagnetic response of a slab made of an inhomogeneous material. This response is compared with that obtained by using the layer Korringa-Kohn-Rostoker wave calculation method (LKKR). We analyze the optical properties for different filling fractions, especially in the vicinity of the resonance frequencies of the macroscopic dielectric function. We notice that for dense systems within the long wavelength regime, the results of some analytical theories developed by other authors do not properly describe the multipolar excitations and interactions of orders higher than the dipole, in contrast with the results obtained by using an ENR. Therefore, those methods are not suitable for the design of compound films with novel properties. We show that by appropriately choosing the parameters of the composite, it is possible to achieve a tunable absorber film, and more generally, we show that ENR is a versatile tool for the design of nanoparticle composite materials with specific properties. © 2014 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Effective non-retarded method as a tool for the design of tunable nanoparticle composite absorbers
Autor:Ortiz, G.; Inchaussandague, M.; Skigin, D.; Depine, R.; Mochán, W.L.
Filiación:Departamento de Física, Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional Del Nordeste, Avenida Libertad 5470, Corrientes, W3404AAS, Argentina
Grupo de Electromagnetismo Aplicado, Departamento de Física, CONICET, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca, Morelos, 62251, Mexico
Palabras clave:effective media; nanoparticles; optical resonances; recursive methods; thin films; tunable absorbers; Composite materials; Metallic matrix composites; Nanoparticles; Optical properties; Quantum optics; Resonance; Thin films; Effective media; Electromagnetic response; Inhomogeneous materials; Korringa-kohn-rostoker; Optical resonance; Recursive methods; Specific optical properties; tunable absorbers; Nanocomposite films
Año:2014
Volumen:16
Número:10
DOI: http://dx.doi.org/10.1088/2040-8978/16/10/105012
Título revista:Journal of Optics (United Kingdom)
Título revista abreviado:J. Opt.
ISSN:20408978
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20408978_v16_n10_p_Ortiz

Referencias:

  • Bergman, D.J., Calculation of bounds for some average bulk properties of composite materials (1976) Phys. Rev., 14, pp. 4304-4312
  • Fuchs, R., Optical properties of small-particle composites (1977) Electrical Transport and Optical Properties of Inhomogeneous Media, pp. 276-281. , ed Garland J.C.,Tanner D.B
  • Milton, G.W., Bounds on the complex dielectric constant of a composite material (1980) Appl. Phys. Lett., 37, pp. 300-302
  • Mochán, W.L., Barrera, R.G., Electromagnetic response of systems with spatial fluctuations. I. General formalism (1985) Phys. Rev., 32, pp. 4984-4988
  • Mochán, W.L., Barrera, R.G., Electromagnetic response of systems with spatial fluctuations. II. Applications (1985) Phys. Rev., 32, pp. 4989-5001
  • Barrera, R.G., Monsivais, G.M., Mochán, W.L., Renormalized polarizability in the Maxwell-Garnett theory (1988) Phys. Rev., 38, pp. 5371-5379
  • Ghosh, K., Fuchs, R., Critical behavior in the dielectric properties of random self-similar composites (1991) Phys. Rev., 44, pp. 7330-7343
  • Felderhof, B.U., Ford, G.W., Cohen, E.G.D., Cluster expansion for the dielectric constant of a polarizable suspension (1982) J. Stat. Phys., 28, pp. 135-164
  • Barrera, R.G., Monsivais, G.M., Mochán, W.L., Anda, E., Diagrammatic approach to the effective dielectric response of composites (1989) Phys. Rev., 39, pp. 9998-10008
  • Garland, J.C., Tanner, D.B., (1978) Electrical Transport and Optical Properties of Inhomogeneous Media, , (ed)
  • Mochán, W.L., Barrera, R.G., (1994) Electrical Transport and Optical Properties of Inhomogeneous Media, , (ed)
  • Shalaev, V.M., (1996) Electromagnetic Properties of Small-particle Composites, 272, pp. 61-137
  • Milton, G.W., Golden, K.M., Dobson, D., Vardeny, A.Z., (2003) Electrical Transport and Optical Properties of Inhomogeneous Media, , (ed)
  • Ortiz, G.P., Martínez-Zérega, B.E., Mendoza, B.S., Mochán, W.L., Effective optical response of metamaterials (2009) Phys. Rev., 79
  • Cortes, E., Mochán, W.L., Mendoza, B.S., Ortiz, G.P., Optical properties of nanostructured metamaterials (2010) Phys. Status Solidi, 247, pp. 2102-2107
  • Mochán, W.L., Ortiz, G.P., Mendoza, B.S., Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites (2010) Opt. Express, 18, pp. 22119-22127
  • Mendoza, B.S., Mochán, W.L., Birefringent nanostructured metamaterials (2012) Phys. Rev., 85
  • Bruggeman, D.A.G., Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen (1935) Ann. Phys., 416, pp. 665-679
  • Maxwell-Garnett, J.C., Colours in metal glasses and metal films (1904) Philos. Trans. R. Soc. London, 203, pp. 385-420
  • Waterman, P.C., Pedersen, N.E., Electromagnetic scattering by periodic array of particles (1986) J. Appl. Phys., 59, pp. 2609-2618
  • Doyle, W.T., The permitivity of cubic arrays of spheres (1977) Electrical Transport and Optical Properties of Inhomogeneous Media, p. 300. , ed Garland J.C.,Tanner D.B
  • Claro, F., Theory of resonant modes in particulate matter (1984) Phys. Rev., 30, p. 4989
  • Yannopapas, V., Moroz, A., Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges (2005) J. Phys.: Condens. Matter, 17 (25), pp. 3717-3734
  • Moroz, A., Localized resonances of composite particles (2009) J. Phys. Chem. C., 113, pp. 21604-21610
  • Chern, R.L., Liu, X.X., Effective parameters and quasi-static resonances for periodic array of dielectric spheres (2010) J. Opt. Soc. Am., 27, pp. 488-496
  • Barrera, R.G., Mendoza, C.I., Three-particle correlations in the optical properties of granular composites (1994) Solar Energy Materials and Solar Cells, 32, p. 463
  • Ortiz, G.P., López-Bastidas, C., Maytorena, J.A., Mochán, W.L., Bulk response of composite from finite samples (2003) Physica, 338, pp. 54-57
  • Rojas, R., Claro, F., Electromagnetic response of an array of particles: Normal-mode theory (1986) Phys. Rev., 34, p. 3730
  • Geist, B., Spillman, W.B., Jr., Claus, R.O., Thermal cycling and the optical and electrical characterization of self-assembled multilayer nile blue a-gold thin films (2005) Appl. Opt., 44, pp. 6357-6360
  • Lee, J.H., Wu, Q., Park, W., Metal nanocluster metamaterial fabricated by the colloidal self-assembly (2009) Opt. Lett., 34, pp. 443-445
  • Mühlig, S., Rockstuhl, C., Yannopapas, V., Bürgi, T., Shalkevich, N., Lederer, F., Optical properties of a fabricated self-assembled bottom-up bulk metamaterial (2011) Opt. Express, 19, pp. 9607-9616
  • Modinos, A., Scattering of electromagnetic waves by a plane of spheres-formalism (1987) Physica, 141, pp. 575-588
  • Stefanou, N., Yannopapas, V., Modinos, A., Heterostructures of photonic crystals: Frequency bands and transmission coefficients (1998) Comput. Phys. Commun., 113, pp. 49-77
  • Yannopapas, V., Modinos, A., Stefanou, N., Optical properties of metallodielectric photonic crystals (1999) Phys. Rev., 60, p. 5359
  • Stefanou, N., Yannopapas, V., Modinos, A., Multem 2: A new version of the program for transmission and band-structure calculations of photonic crystals (2000) Comput. Phys. Commun., 132, pp. 189-196
  • Dorado, L.A., Depine, R.A., Míguez, H., Effect of extinction on the high-energy optical response of photonic crystals (2007) Phys. Rev., 75
  • Haydock, R., The recursive solution of the Schrödinger equation (1980) Solid State Physics, 35, p. 215
  • Glazebrook, K., Brinchmann, J., Cerney, J., Deforest, C., Hunt, D., Jenness, T., Luka, T., Soeller, C., (1997) Pdl: The Perl Data Language V.2.4.4
  • Johnson, P.B., Christy, R.M., Optical constant of noble metals (1972) Phys. Rev., 6, p. 4370
  • Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Cluster, 25
  • Ghenuche, P., Vincent, G., Laroche, M., Bardou, N., Haïdar, R., Pelouard, J.-L., Collin, S., Optical extinction in a single layer of nanorods (2012) Phys. Rev. Lett., 109
  • Fuchs, R., Theory of the optical properties of ionic crystal cubes (1975) Phys. Rev., 11, p. 1732
  • Wang, Z.L., Transmission electron microscopy of shape-controlled nanocrystals and their assemblies (2000) J. Phys. Chem. B., 104, p. 1153
  • Yacaman, M.J., Ascencio, J.A., Liu, H.B., Gardea-Torresdey, J., Structure shape and stability of nanometric sized particles (2001) J. Vac. Sci. Technol. B., 19, p. 1091
  • Gonzalez, A.L., Noguez, C., Ortiz, G.P., Rodriguez-Gattorno, G., Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles (2005) J. Phys. Chem., 109, pp. 17512-17517

Citas:

---------- APA ----------
Ortiz, G., Inchaussandague, M., Skigin, D., Depine, R. & Mochán, W.L. (2014) . Effective non-retarded method as a tool for the design of tunable nanoparticle composite absorbers. Journal of Optics (United Kingdom), 16(10).
http://dx.doi.org/10.1088/2040-8978/16/10/105012
---------- CHICAGO ----------
Ortiz, G., Inchaussandague, M., Skigin, D., Depine, R., Mochán, W.L. "Effective non-retarded method as a tool for the design of tunable nanoparticle composite absorbers" . Journal of Optics (United Kingdom) 16, no. 10 (2014).
http://dx.doi.org/10.1088/2040-8978/16/10/105012
---------- MLA ----------
Ortiz, G., Inchaussandague, M., Skigin, D., Depine, R., Mochán, W.L. "Effective non-retarded method as a tool for the design of tunable nanoparticle composite absorbers" . Journal of Optics (United Kingdom), vol. 16, no. 10, 2014.
http://dx.doi.org/10.1088/2040-8978/16/10/105012
---------- VANCOUVER ----------
Ortiz, G., Inchaussandague, M., Skigin, D., Depine, R., Mochán, W.L. Effective non-retarded method as a tool for the design of tunable nanoparticle composite absorbers. J. Opt. 2014;16(10).
http://dx.doi.org/10.1088/2040-8978/16/10/105012