Artículo

Peinetti, A.S.; Ceretti, H.; Mizrahi, M.; González, G.A.; Ramírez, S.A.; Requejo, F.G.; Montserrat, J.M.; Battaglini, F. "Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors" (2015) Nanoscale. 7(17):7763-7769
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A controlled architecture of nanoelectrodes, of a similar size to small molecule-binding aptamers, is synthesized inside nanoporous alumina. Gold nanoparticles with a controlled size (about 2 nm) are electrogenerated in the alumina cavities, showing a fast electron transfer process toward ferrocyanide. These uncapped nanoparticles are easily modified with a thiol-containing aptamer for label-free detection of adenosine monophosphate by electrochemical impedance spectroscopy. Our results show that the use of a limited electrical conducting surface inside an insulating environment can be very sensitive to conformational changes, introducing a new approach to the detection of small molecules, exemplified here by the direct and selective detection of adenosine monophosphate at the nanomolar scale. © The Royal Society of Chemistry 2015.

Registro:

Documento: Artículo
Título:Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
Autor:Peinetti, A.S.; Ceretti, H.; Mizrahi, M.; González, G.A.; Ramírez, S.A.; Requejo, F.G.; Montserrat, J.M.; Battaglini, F.
Filiación:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Universidad Nacional de Gral. Sarmiento, J. M. Gutierrez 1150, Los Polvorines, Prov. de Bs. As. B1613GSX, Argentina
INGEBI (CONICET), Vuelta de Obligado 2490, Buenos Aires, 1428, Argentina
Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas - INIFTA, La Plata, 1900, Argentina
Palabras clave:Alumina; Electric conductance; Electrochemical impedance spectroscopy; Electron transport properties; Fiber optic sensors; Gold; Metal nanoparticles; Molecules; Nanoparticles; Adenosine monophosphate; Conducting surfaces; Conformational change; Controlled architecture; Fast electron transfer; Label-free detection; Small-molecule bindings; Uncapped Nanoparticles; Synthesis (chemical); adenosine phosphate; aluminum oxide; aptamer; gold; metal nanoparticle; chemistry; impedance; nanotechnology; porosity; procedures; Adenosine Monophosphate; Aluminum Oxide; Aptamers, Nucleotide; Electric Impedance; Gold; Metal Nanoparticles; Nanotechnology; Porosity
Año:2015
Volumen:7
Número:17
Página de inicio:7763
Página de fin:7769
DOI: http://dx.doi.org/10.1039/c5nr01429h
Título revista:Nanoscale
Título revista abreviado:Nanoscale
ISSN:20403364
CAS:adenosine phosphate, 61-19-8, 8063-98-7; aluminum oxide, 1302-74-5, 1318-23-6, 1344-28-1, 14762-49-3; gold, 7440-57-5; Adenosine Monophosphate; Aluminum Oxide; Aptamers, Nucleotide; Gold
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v7_n17_p7763_Peinetti

Referencias:

  • Shi, H., Ye, X., He, X., Wang, K., Cui, W., He, D., Li, D., Jia, X., (2014) Nanoscale, 6, p. 8754
  • Busseron, E., Ruff, Y., Moulin, E., Giuseppone, N., (2013) Nanoscale, 5, p. 7098
  • Ziegler, S., Pries, V., Hedberg, C., Waldmann, H., (2013) Angew. Chem., Int. Ed., 52, p. 2744
  • Mu, B., Zhang, J., McNicholas, T.P., Reuel, N.F., Kruss, S., Strano, M.S., (2014) Acc. Chem. Res., 47, p. 979
  • Willner, I., Zayats, M., (2007) Angew. Chem., Int. Ed., 46, p. 6408
  • Walter, J.G., Heilkenbrinker, A., Austerjost, J., Timur, S., Stahl, F., Scheper, T., (2011) Z. Naturforsch., B: Chem. Sci., 67, p. 976
  • Hunt, H.K., Armani, A.M., (2010) Nanoscale, 2, p. 1544
  • Katz, E., Willner, I., (2003) Electroanalysis, 15, p. 913
  • Gutés, A., Lee, B.-Y., Carraro, C., Mickelson, W., Lee, S.-W., Mabouduan, R., (2013) Nanoscale, 5, p. 6048
  • Rodriguez, M.C., Kawde, A.-N., Wang, J., (2005) Chem. Commun., 34, p. 4267
  • Radi, A.-E., Sanchez, J.L.A., Baldrich, E., ÓSullivan, C.K., (2005) Anal. Chem., 77, p. 6320
  • Peinetti, A.S., Herrera, S., González, G.A., Battaglini, F., (2013) Chem. Commun., 49, p. 11317
  • Porkka-Heiskanen, T., Alanko, L., Kalinchuk, A., Stenberg, D., (2002) Sleep Med. Rev., 6, p. 321
  • Dunwiddie, T.V., Masino, S.A., (2001) Annu. Rev. Neurosci., 24, p. 31
  • Huizenga, D., Szostak, J.W., (1995) Biochemistry, 34, p. 656
  • Lin, C.H., Patel, D., (1997) Chem. Biol., 4, p. 817
  • Li, Z., Zhang, L., Mo, H., Peng, Y., Zhang, H., Xu, Z., Zheng, C., Lu, Z., (2014) Analyst, 139, p. 3137
  • Priano, G., González, G., Günther, M., Battaglini, F., (2008) Electroanalysis, 20, p. 91
  • Ravel, B., Newville, M., (2005) J. Synchrotron Radiat., 12, p. 537e41
  • Newville, M., (2001) J. Synchrotron Radiat., 8, p. 322e4
  • Ceretti, H., Ponce, B., Ramírez, S., Montserrat, J.M., (2010) Electroanalysis, 22, p. 147
  • Zhang, X., Yadavalli, V.K., (2011) Biosens. Bioelectron., 26, p. 3142
  • Ramallo-López, J.M., Requejo, F.G., Craievich, A.F., Wei, J., Avalos-Borja, M., Iglesia, E., (2005) J. Mol. Catal. A: Chem., 228, p. 299
  • Ramallo-López, J.M., Giovanetti, L.J., Requejo, F.G., Isaacs, S.R., Shon, Y.S., Salmeron, M., (2006) Phys. Rev. B: Condens. Matter, 74, p. 073410. , and references therein
  • Strong, L., Whitesides, G.M., (1988) Langmuir, 4, p. 546
  • Ohshiro, T., Maeda, M., (2010) Chem. Commun., 46, p. 2581
  • Petrovykh, D.Y., Kimura-Suda, H., Whitman, L.J., Tarlov, M.J., (2003) J. Am. Chem. Soc., 125, p. 5219
  • Papadakis, G., Tsortos, A., Bender, F., Ferapontova, E.E., Gizeli, E., (2012) Anal. Chem., 84, p. 1854
  • Hermann, T., Patel, D.J., (2000) Science, 287, p. 820
  • Liu, J., Lu, Y., (2006) Angew. Chem., Int. Ed., 45, p. 90

Citas:

---------- APA ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M.,..., Battaglini, F. (2015) . Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors. Nanoscale, 7(17), 7763-7769.
http://dx.doi.org/10.1039/c5nr01429h
---------- CHICAGO ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., et al. "Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors" . Nanoscale 7, no. 17 (2015) : 7763-7769.
http://dx.doi.org/10.1039/c5nr01429h
---------- MLA ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., et al. "Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors" . Nanoscale, vol. 7, no. 17, 2015, pp. 7763-7769.
http://dx.doi.org/10.1039/c5nr01429h
---------- VANCOUVER ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., et al. Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors. Nanoscale. 2015;7(17):7763-7769.
http://dx.doi.org/10.1039/c5nr01429h