Artículo

Giussi, J.M.; Von Bilderling, C.; Alarcón, E.; Pietrasanta, L.I.; Hernandez, R.; Del Real, R.P.; Vázquez, M.; Mijangos, C.; Cortez, M.L.; Azzaroni, O. "Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles" (2018) Nanoscale. 10(3):1189-1195
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The possibility of combining more than one stimulus-responsive property into a single material holds interesting potential for the creation of adaptive devices to be used in diverse fields such as drug delivery, nanomedicine and tissue engineering. This paper describes a novel material based on thermo-responsive PNIPAm nanopillars with amplified surface properties through the incorporation of Fe3O4 nanoparticles. The incorporation of magnetic nanoparticles into the nanopillars, prepared via surface-initiated atom-transfer radical polymerization in anodized aluminum oxide templates, sharply increased their stiffness and hydrophobicity when increasing the temperature above the volume phase transition temperature. Furthermore, their magnetic response turned out to be proportional to the amount of the incorporated nanoparticles. The possibility of sharply increasing the stiffness with a temperature variation close to the human body temperature paves the way to the application of these substrates as "smart" scaffolds for cell culture. Additionally, the presence of superparamagnetic nanoparticles in the nanopillars offers the possibility of using these nanostructured systems for magnetic hyperthermia. © 2018 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles
Autor:Giussi, J.M.; Von Bilderling, C.; Alarcón, E.; Pietrasanta, L.I.; Hernandez, R.; Del Real, R.P.; Vázquez, M.; Mijangos, C.; Cortez, M.L.; Azzaroni, O.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, La Plata, 1900, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Instituto de Física de Buenos Aires (IFIBA), CONICET, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva 3, Madrid, 28006, Spain
Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
Palabras clave:Acrylics; Atom transfer radical polymerization; Cell culture; Free radical reactions; Iron compounds; Magnetism; Medical nanotechnology; Nanomagnetics; Nanoparticles; Nanostructures; Scaffolds (biology); Stiffness; Temperature; Tissue engineering; Anodized aluminum oxide; Human body temperature; Magnetic nano-particles; Nanostructured systems; Superparamagnetic nanoparticles; Surface initiated-atom transfer radical polymerization; Temperature variation; Volume phase transition; Drug delivery
Año:2018
Volumen:10
Número:3
Página de inicio:1189
Página de fin:1195
DOI: http://dx.doi.org/10.1039/c7nr06209e
Título revista:Nanoscale
Título revista abreviado:Nanoscale
ISSN:20403364
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v10_n3_p1189_Giussi

Referencias:

  • Assender, H., (2002) Science, 297, pp. 973-976
  • Yang, Y., Kulangara, K., Lam, R.T.S., Dharmawan, R., Leong, K.W., (2012) ACS Nano, 6, pp. 8591-8598
  • Lutolf, M.P., (2009) Nat. Mater., 8, pp. 451-453
  • Vashist, A., Vashist, A., Gupta, Y.K., Ahmad, S., (2014) J. Mater. Chem. B, 2, pp. 147-166
  • Kaholek, M., Lee, W.K., Feng, J., Lamattina, B., Dyer, D.J., Zauscher, S., (2006) Chem. Mater., 18, pp. 3660-3664
  • Senff, H., Richtering, W., (1999) J. Chem. Phys., 111, pp. 1705-1711
  • Peng, J., Qi, T., Liao, J., Fan, M., Luo, F., Li, H., Qian, Z., (2012) Nanoscale, 4, p. 2694
  • Yang, J.A., Yeom, J., Hwang, B.W., Hoffman, A.S., Hahn, S.K., (2014) Prog. Polym. Sci., pp. 1-14
  • Ionov, L., (2014) Mater. Today, 17, pp. 494-503
  • Wang, D., Cheng, D., Guan, Y., Zhang, Y., (2011) Biomacromolecules, 12, pp. 578-584
  • Shen, J., Ye, T., Chang, A., Wu, W., Zhou, S., (2012) Soft Matter, pp. 12034-12042
  • Molina, M., Asadian-Birjand, M., Balach, J., Bergueiro, J., Miceli, E., Calderón, M., (2015) Chem. Soc. Rev., 44, pp. 6161-6186
  • Becerra, N., Andrade, H., López, B., Restrepo, L.M., Raiteri, R., (2015) J. Biomed. Mater. Res., Part A, 103, pp. 145-153
  • Ashraf, S., Park, H.K., Park, H., Lee, S.H., (2016) Macromol. Res., 24, pp. 297-304
  • Mijangos, C., Hernandez, R., Martin, J., (2015) Prog. Polym. Sci., 54-55, pp. 148-182
  • Giussi, J.M., Blaszczyk-Lezak, I., Allegretti, P.E., Cortizo, M.S., Mijangos, C., (2013) Polymer, 54, pp. 5050-5057
  • Martín, J., Mijangos, C., (2009) Langmuir, 25, pp. 1181-1187
  • Wang, Y., Lee, J.Y., Zeng, H.C., Crescent, K.R., (2005) Chem. Mater., 17, pp. 3899-3903
  • Choi, M.K., Yoon, H., Lee, K., Shin, K., (2011) Langmuir, 27, pp. 2132-2137
  • Cui, Y., Tao, C., Zheng, S., He, Q., Ai, S., Li, J., (2005) Macromol. Rapid Commun., 26, pp. 1552-1556
  • Wang, H.J., Zhou, W.H., Yin, X.F., Zhuang, Z.X., Yang, H.H., Wang, X.R., (2006) J. Am. Chem. Soc., 128, pp. 15954-15955
  • Giussi, J.M., Blaszczyk-Lezak, I., Cortizo, M.S., Mijangos, C., (2013) Polymer, 54, pp. 6886-6893
  • Woo, B., Cho, K., Choi, I.S., (2008) Adv. Funct. Mater., pp. 1089-1096
  • Sanz, B., Von Bilderling, C., Tuninetti, J.S., Pietrasanta, L., Mijangos, C., Longo, G.S., Azzaroni, O., Giussi, J.M., (2017) Soft Matter, 13, pp. 2453-2464
  • Jańczewski, D., Tomczak, N., Han, M.Y., Vancso, G.J., (2009) Macromolecules, 42, pp. 1801-1804
  • Gui, R., An, X., Gong, J., Chen, T., (2012) Mater. Lett., 88, pp. 122-125
  • Xu, H., Xu, J., Zhu, Z., Liu, H., Liu, S., (2006) Macromolecules, 39, pp. 8451-8455
  • Kawano, T., Niidome, Y., Mori, T., Katayama, Y., Niidome, T., (2009) Bioconjugate Chem., 20, pp. 209-212
  • Jin, H., Liu, X., Gui, R., Wang, Z., (2015) Colloids Surf., B, 128, pp. 498-505
  • Luo, B., Song, X.-J., Zhang, F., Xia, A., Yang, W.-L., Hu, J.-H., Wang, C.-C., (2010) Langmuir, 26, pp. 1674-1679
  • Sun, J., Gui, R., Jin, H., Li, N., Wang, X., (2016) RSC Adv., 6, pp. 8722-8728
  • Tang, H., Shen, S., Guo, J., Chang, B., Jiang, X., Yang, W., (2012) J. Mater. Chem., 22, pp. 16095-16103
  • Borlido, L., Moura, L., Azevedo, A.M., Roque, A.C.A., Aires-Barros, M.R., Farinha, J.P.S., (2013) Biotechnol. J., 8, pp. 709-717
  • Kim, J., Chung, S.E., Choi, S., Lee, H., Kim, J., Kwon, S., (2011) Nat. Mater., 10, pp. 747-752
  • Drotlef, D.M., Blümler, P., Papadopoulos, P., Del Campo, A., (2014) ACS Appl. Mater. Interfaces, 6, pp. 8702-8707
  • Masuda, H., Yotsuya, M., Ishida, M., (1998) Jpn. J. Appl. Phys., Part 2, 37, pp. L1090-L1092
  • Hernández-Vélez, M., (2006) Thin Solid Films, 495, pp. 51-63
  • Hutter, J.L., Bechhoefer, J., (1993) Rev. Sci. Instrum., 64, pp. 1868-1873
  • Lin, D.C., Dimitriadis, E.K., Horkay, F., (2007) J. Biomech. Eng., 129, pp. 904-912
  • Oliver, W.C., Pharr, G.M., (1992) J. Mater. Res., 7, pp. 1564-1580
  • Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., Oertle, P., Hyotyla, J.T., Schoenenberger, C.-A., (2012) Nat. Nanotechnol., 7, pp. 757-765
  • Castaneda, L., Valle, J., Yang, N., Pluskat, S., Slowinska, K., Castaneda, L., Valle, J., Slowinska, K., (2008) Biomacromolecules, 9, pp. 3383-3388
  • Cheng, X., Canavan, H.E., Stein, M.J., Hull, J.R., Kweskin, S.J., Wagner, M.S., Somorjai, G.A., Ratner, B.D., (2005) Langmuir, 21, pp. 7833-7841
  • Schmidt, S., Zeiser, M., Hellweg, T., Duschl, C., Fery, A., Möhwald, H., (2010) Adv. Funct. Mater., 20, pp. 3235-3243
  • Burmistrova, A., Richter, M., Eisele, M., Üzüm, C., Von Klitzing, R., (2011) Polymers, 3, pp. 1575-1590
  • Koppolu, B., Bhavsar, Z., Wadajkar, A.S., Nattama, S., Rahimi, M., Nwariaku, F., Nguyen, K.T., (2012) J. Biomed. Nanotechnol., 8, pp. 983-990

Citas:

---------- APA ----------
Giussi, J.M., Von Bilderling, C., Alarcón, E., Pietrasanta, L.I., Hernandez, R., Del Real, R.P., Vázquez, M.,..., Azzaroni, O. (2018) . Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles. Nanoscale, 10(3), 1189-1195.
http://dx.doi.org/10.1039/c7nr06209e
---------- CHICAGO ----------
Giussi, J.M., Von Bilderling, C., Alarcón, E., Pietrasanta, L.I., Hernandez, R., Del Real, R.P., et al. "Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles" . Nanoscale 10, no. 3 (2018) : 1189-1195.
http://dx.doi.org/10.1039/c7nr06209e
---------- MLA ----------
Giussi, J.M., Von Bilderling, C., Alarcón, E., Pietrasanta, L.I., Hernandez, R., Del Real, R.P., et al. "Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles" . Nanoscale, vol. 10, no. 3, 2018, pp. 1189-1195.
http://dx.doi.org/10.1039/c7nr06209e
---------- VANCOUVER ----------
Giussi, J.M., Von Bilderling, C., Alarcón, E., Pietrasanta, L.I., Hernandez, R., Del Real, R.P., et al. Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles. Nanoscale. 2018;10(3):1189-1195.
http://dx.doi.org/10.1039/c7nr06209e