Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points. © 2018, © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.

Registro:

Documento: Artículo
Título:Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
Autor:Théry, C. et al.
Este artículo contiene 382 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 382 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Palabras clave:ectosomes; exosomes; extracellular vesicles; guidelines; microparticles; microvesicles; minimal information requirements; reproducibility; rigor; standardization; protein; Article; biochemical analysis; biogenesis; body fluid; cell communication; cell culture; consensus; exosome; health care organization; human; information processing; medical information; medical research; membrane microparticle; nonhuman; pathology; physiological process; practice guideline; protein analysis; publication; storage; tissue culture
Año:2018
Volumen:7
Número:1
DOI: http://dx.doi.org/10.1080/20013078.2018.1535750
Título revista:Journal of Extracellular Vesicles
Título revista abreviado:J. Extracell. Vesicles
ISSN:20013078
CAS:protein, 67254-75-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20013078_v7_n1_p_Thery

Referencias:

  • References, especially those provided to illustrate methods and approaches, are representative only, and are not meant to be a comprehensive review of the literature. Most references were derived from suggestions provided in the MISEV2018 Survey results. Each reference was checked by multiple authors. Citation implies deemed relevance of scientific content and not an endorsement by the authors or ISEV of any particular journal or editorial practice.
  • Lotvall, J., Hill, A.F., Hochberg, F., Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles (2014) J Extracell Vesicles, 3, p. 26913. , http://www.ncbi.nlm.nih.gov/pubmed/25536934, Available from
  • Witwer, K.W., Soekmadji, C., Hill, A.F., Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility (2017) J Extracell Vesicles, 6 (1), p. 1396823. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1396823, Available from
  • Stein, J.M., Luzio, J.P., Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles (1991) Biochem J, 274, pp. 381-343. , http://www.ncbi.nlm.nih.gov/pubmed/1848755, Available from
  • Cocucci, E., Meldolesi, J., Ectosomes and exosomes: shedding the confusion between extracellular vesicles (2015) Trends Cell Biol, 25 (6), pp. 364-372. , http://www.ncbi.nlm.nih.gov/pubmed/25683921, Available from
  • Gould, S.J., Raposo, G., As we wait: coping with an imperfect nomenclature for extracellular vesicles (2013) J Extracell Vesicles, 2. , http://www.ncbi.nlm.nih.gov/pubmed/24009890, Available from
  • Gardiner, C., Di Vizio, D., Sahoo, S., Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey (2016) J Extracell Vesicles, 5, p. 32945. , http://www.ncbi.nlm.nih.gov/pubmed/27802845, Available from
  • Rojas, A., The imperative authentication of cell lines (2017) Antimicrob Agents Chemother, 61 (11), pp. e01817-e1823. , http://aac.asm.org/lookup/doi/10.1128/AAC.01823-17, Available from
  • Reid, Y., Storts, D., Riss, T., Authentication of human cell lines by STR DNA profiling analysis [Internet] (2004) Assay Guidance Manual, , http://www.ncbi.nlm.nih.gov/pubmed/23805434, Available from
  • Chen, T.S., Arslan, F., Yin, Y., Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs (2011) J Transl Med, 9 (1), p. 47. , http://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-9-47, Available from
  • Lima, L.G., Chammas, R., Monteiro, R.Q., Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner (2009) Cancer Lett, 283 (2), pp. 168-175. , http://linkinghub.elsevier.com/retrieve/pii/S0304383509002420, Available from
  • Frey, B., Gaipl, U.S., The immune functions of phosphatidylserine in membranes of dying cells and microvesicles (2011) Semin Immunopathol, 33 (5), pp. 497-516. , http://link.springer.com/10.1007/s00281-010-0228-6, Available from
  • Roseblade, A., Luk, F., Ung, A., Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance (2015) Curr Cancer Drug Targets, 15 (3), pp. 205-214. , http://www.ncbi.nlm.nih.gov/pubmed/25714701, Available from
  • Takasugi, M., Emerging roles of extracellular vesicles in cellular senescence and aging (2018) Aging Cell, 17 (2), p. e12734
  • Patel, D.B., Gray, K.M., Santharam, Y., Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles (2017) Bioeng Transl Med, 2 (2), pp. 170-179
  • Dang, V.D., Jella, K.K., Ragheb, R.R.T., Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells (2017) FASEB J, 31 (12), pp. 5399-5408. , http://www.fasebj.org/doi/10.1096/fj.201700417R, Available from
  • Klingeborn, M., Dismuke, W.M., Skiba, N.P., Directional exosome proteomes reflect polarity-specific functions in retinal pigmented epithelium monolayers (2017) Sci Rep, 7 (1), p. 4901. , http://www.nature.com/articles/s41598-017-05102-9, Available from
  • Mittelbrunn, M., Vicente-Manzanares, M., Sánchez-Madrid, F., Organizing polarized delivery of exosomes at synapses (2015) Traffic, 16 (4), pp. 327-337. , http://www.ncbi.nlm.nih.gov/pubmed/25614958, Available from
  • van Niel, G., Raposo, G., Candalh, C., Intestinal epithelial cells secrete exosome-like vesicles (2001) Gastroenterology, 121 (2), pp. 337-349. , http://www.ncbi.nlm.nih.gov/pubmed/11487543, Available from
  • Tauro, B.J., Greening, D.W., Mathias, R.A., Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids (2013) Mol Cell Proteomics, 12 (3), pp. 587-598. , http://www.mcponline.org/lookup/doi/10.1074/mcp.M112.021303, Available from
  • Yan, I.K., Shukla, N., Borrelli, D.A., Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture (2018) Methods Mol Biol, 1740, pp. 35-41. , http://link.springer.com/10.1007/978-1-4939-7652-2_4, Available from
  • Watson, D.C., Yung, B.C., Bergamaschi, C., Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes (2018) J Extracell Vesicles, 7 (1), p. 1442088. , http://www.ncbi.nlm.nih.gov/pubmed/29535850, Available from
  • Lowry, M.C., O’Driscoll, L., Can hi-jacking hypoxia inhibit extracellular vesicles in cancer? (2018) Drug Discov Today, 23 (6), pp. 1267-1273. , https://linkinghub.elsevier.com/retrieve/pii/S1359644617303252, Available from
  • Mitchell, M.D., Peiris, H.N., Kobayashi, M., Placental exosomes in normal and complicated pregnancy (2015) Am J Obstet Gynecol, 213, pp. S173-S181. , http://linkinghub.elsevier.com/retrieve/pii/S0002937815007176, Available from
  • de Jong, O.G., Verhaar, M.C., Chen, Y., Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes (2012) J Extracell Vesicles, 1 (1), p. 18396. , https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.18396, Available from
  • Stratton, D., Moore, C., Antwi-Baffour, S., Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5b-9 (2015) Biochem Biophys Res Commun, 460 (3), pp. 589-595. , http://linkinghub.elsevier.com/retrieve/pii/S0006291X15005203, Available from
  • Dozio, V., Sanchez, J.-C., Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure (2017) J Extracell Vesicles, 6 (1), p. 1302705. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1302705, Available from
  • Taylor, J., Jaiswal, R., Bebawy, M., Calcium-calpain dependent pathways regulate vesiculation in malignant breast cells (2017) Curr Cancer Drug Targets, 17 (5), pp. 486-494. , http://www.eurekaselect.com/node/146745/article, Available from
  • Mostefai, H.A., Agouni, A., Carusio, N., Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells (2008) J Immunol, 180 (7), pp. 5028-5035. , http://www.ncbi.nlm.nih.gov/pubmed/18354228, Available from
  • Agouni, A., Mostefai, H.A., Porro, C., Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release (2007) FASEB J, 21 (11), pp. 2735-2741. , http://www.fasebj.org/doi/10.1096/fj.07-8079com, Available from
  • Soekmadji, C., Riches, J.D., Russell, P.J., Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer (2017) Oncotarget, 8 (32), pp. 52237-52255. , http://www.oncotarget.com/fulltext/11111, Available from
  • Saari, H., Lázaro-Ibáñez, E., Viitala, T., Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells (2015) J Control Release, 220 (PtB), pp. 727-737. , http://linkinghub.elsevier.com/retrieve/pii/S0168365915301322, Available from
  • Lázaro-Ibáñez, E., Neuvonen, M., Takatalo, M., Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles (2017) J Extracell Vesicles, 6 (1), p. 1354645. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1354645, Available from
  • Chernov, V.M., Mouzykantov, A.A., Baranova, N.B., Extracellular membrane vesicles secreted by mycoplasma acholeplasma laidlawii PG8 are enriched in virulence proteins (2014) J Proteomics, 110, pp. 117-128. , http://linkinghub.elsevier.com/retrieve/pii/S1874391914003819, Available from
  • Corral-Vázquez, C., Aguilar-quesada, R., Catalina, P., Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking (2017) Cell Tissue Bank, 18 (2), pp. 271-280. , http://link.springer.com/10.1007/s10561-017-9617-6, Available from
  • Yang, C., Chalasani, G., Ng, Y.-H., Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells (2012) PLoS One, 7 (4). , http://dx.plos.org/10.1371/journal.pone.0036138, Available from
  • Quah, B.J.C., O’Neill, H.C., Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses (2007) J Leukoc Biol, 82 (5), pp. 1070-1082
  • Mathivanan, S., Lim, J.W., Tauro, B.J., Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature (2010) Mol Cell Proteomics, 9 (2), pp. 197-208. , http://www.ncbi.nlm.nih.gov/pubmed/19837982, Available from
  • Burger, D., Turner, M., Xiao, F., High glucose increases the formation and pro-oxidative activity of endothelial microparticles (2017) Diabetologia, 60 (9), pp. 1791-1800. , http://link.springer.com/10.1007/s00125-017-4331-2, Available from
  • Thom, S.R., Bhopale, V.M., Yu, K., Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability (2017) J Biol Chem, 292 (44), pp. 18312-18324. , http://www.jbc.org/lookup/doi/10.1074/jbc.M117.802629, Available from
  • Rice, G.E., Scholz-Romero, K., Sweeney, E., The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells (2015) J Clin Endocrinol Metab, 100 (10), pp. E1280-E1288. , https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2015-2270, Available from
  • Németh, A., Orgovan, N., Sódar, B.W., Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA (2017) Sci Rep, 7 (1), p. 8202. , http://www.nature.com/articles/s41598-017-08392-1, Available from
  • Zhou, X., Zhang, W., Yao, Q., Exosome production and its regulation of EGFR during wound healing in renal tubular cells (2017) Am J Physiol Renal Physiol, 312 (6), pp. F963-F970. , http://www.physiology.org/doi/10.1152/ajprenal.00078.2017, Available from
  • Pachler, K., Lener, T., Streif, D., A good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles (2017) Cytotherapy, 19 (4), pp. 458-472. , http://linkinghub.elsevier.com/retrieve/pii/S1465324917300038, Available from
  • Saury, C., Lardenois, A., Schleder, C., Human serum and platelet lysate are appropriate xeno-free alternatives for clinical-grade production of human MuStem cell batches (2018) Stem Cell Res Ther, 9 (1), p. 128. , https://stemcellres.biomedcentral.com/articles/10.1186/s13287-018-0852-y, Available from
  • Li, J., Lee, Y., Johansson, H.J., Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles (2015) J Extracell Vesicles, 4 (1), p. 26883. , https://www.tandfonline.com/doi/full/10.3402/jev.v4.26883, Available from
  • Beninson, L.A., Fleshner, M., Exosomes in fetal bovine serum dampen primary macrophage IL-1β response to lipopolysaccharide (LPS) challenge (2015) Immunol Lett, 163 (2), pp. 187-192. , http://www.ncbi.nlm.nih.gov/pubmed/25455591, Available from
  • Eitan, E., Zhang, S., Witwer, K.W., Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth (2015) J Extracell Vesicles, 4, p. 26373. , http://www.ncbi.nlm.nih.gov/pubmed/25819213, Available from
  • Théry, C., Amigorena, S., Raposo, G., Isolation and characterization of exosomes from cell culture supernatants and biological fluids (2006) Current protocols in cell biology, , http://www.ncbi.nlm.nih.gov/pubmed/18228490, Hoboken, NJ, USA: John Wiley & Sons, Inc, Unit 3.22, Available from,. In:,. p
  • van Balkom, B.W.M., de Jong, O.G., Smits, M., Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells (2013) Blood, 121 (19), pp. 3997-4006. , http://www.ncbi.nlm.nih.gov/pubmed/23532734, Available from
  • Kornilov, R., Puhka, M., Mannerström, B., Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum (2018) J Extracell Vesicles, 7 (1), p. 1422674. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1422674, Available from
  • Wei, Z., Batagov, A.O., Carter, D.R.F., Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA (2016) Sci Rep, 6, p. 31175. , http://www.ncbi.nlm.nih.gov/pubmed/27503761, Available from
  • Shelke, G.V., Lässer, C., Gho, Y.S., Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum (2014) J Extracell Vesicles, 3, p. 24783. , http://www.ncbi.nlm.nih.gov/pubmed/25317276, Available from
  • Tosar, J.P., Cayota, A., Eitan, E., Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? (2017) J Extracell Vesicles, 6 (1), p. 1272832. , http://www.ncbi.nlm.nih.gov/pubmed/28326168, Available from
  • Kaur, S., Singh, S.P., Elkahloun, A.G., CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells (2014) Matrix Biol, 37, pp. 49-59. , http://linkinghub.elsevier.com/retrieve/pii/S0945053X14000924, Available from
  • Witwer, K.W., Buzas, E.I., Bemis, L.T., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research: an ISEV position paper (2013) J Extracell Vesicles, 2, p. 20360
  • Mateescu, B., Kowal, E.J.K., van Balkom, B.W.M., (2017) Obstacles and opportunities in the functional analysis of extracellular vesicle RNA- An ISEV Position Paper, 6, p. 1286095. , J Extracell Vesicles
  • Bæk, R., Søndergaard, E.K.L., Varming, K., The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray (2016) J Immunol Meth, 438, pp. 11-20. , http://linkinghub.elsevier.com/retrieve/pii/S0022175916301624, Available from
  • Barteneva, N.S., Fasler-Kan, E., Bernimoulin, M., Circulating microparticles: square the circle (2013) BMC Cell Biol, 14 (1), p. 23. , http://bmccellbiol.biomedcentral.com/articles/10.1186/1471-2121-14-23, Available from
  • Mullier, F., Bailly, N., Chatelain, C., Pre-analytical issues in the measurement of circulating microparticles: current recommendations and pending questions (2013) J Thromb Haemost, , http://www.ncbi.nlm.nih.gov/pubmed/23410207, Available from
  • Lacroix, R., Judicone, C., Poncelet, P., Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol (2012) J Thromb Haemost, 10 (3), pp. 437-446. , http://www.ncbi.nlm.nih.gov/pubmed/22212198, Available from
  • Coumans, F.A.W., Brisson, A.R., Buzas, E.I., Methodological guidelines to study extracellular vesicles (2017) Circ Res, 120 (10), pp. 1632-1648. , http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.309417, Available from
  • Yuana, Y., Bertina, R.M., Osanto, S., Pre-analytical and analytical issues in the analysis of blood microparticles (2011) Thromb Haemost, 105 (3), pp. 396-408. , http://www.ncbi.nlm.nih.gov/pubmed/21174005, Available from
  • Yuana, Y., Böing, A.N., Grootemaat, A.E., Handling and storage of human body fluids for analysis of extracellular vesicles (2015) J Extracell Vesicles, 4, p. 29260
  • Robbins, P.D., Extracellular vesicles and aging (2017) Stem Cell Investig, 4 (12), p. 98. , http://sci.amegroups.com/article/view/17758/18069, Available from
  • Danielson, K.M., Estanislau, J., Tigges, J., Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry (2016) PLoS One, 11 (1). , http://www.ncbi.nlm.nih.gov/pubmed/26745887, Available from
  • Fendl, B., Weiss, R., Fischer, M.B., Characterization of extracellular vesicles in whole blood: influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry (2016) Biochem Biophys Res Commun, 478 (1), pp. 168-173. , http://linkinghub.elsevier.com/retrieve/pii/S0006291X16311950, Available from
  • Wisgrill, L., Lamm, C., Hartmann, J., Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants (2016) Cytometry A, 89 (7), pp. 663-672
  • György, B., Pálóczi, K., Kovács, A., Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube (2014) Thromb Res, 133 (2), pp. 285-292. , http://linkinghub.elsevier.com/retrieve/pii/S004938481300546X, Available from
  • Mitchell, A.J., Gray, W.D., Hayek, S.S., Platelets confound the measurement of extracellular miRNA in archived plasma (2016) Sci Rep, 6 (1), p. 32651. , http://www.ncbi.nlm.nih.gov/pubmed/27623086, Available from
  • Cheng, H.H., Yi, H.S., Kim, Y., Plasma processing conditions substantially influence circulating microRNA biomarker levels (2013) PLoS One, 8 (6). , http://www.ncbi.nlm.nih.gov/pubmed/23762257, Available from
  • Muller, L., Hong, C.-S., Stolz, D.B., Isolation of biologically-active exosomes from human plasma (2014) J Immunol Meth, 411, pp. 55-65
  • Ayers, L., Kohler, M., Harrison, P., Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay (2011) Thromb Res, 127 (4), pp. 370-377. , http://www.ncbi.nlm.nih.gov/pubmed/21257195, Available from
  • Heijnen, H.F., Schiel, A.E., Fijnheer, R., Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules (1999) Blood, 94 (11), pp. 3791-3799
  • Mincheva-Nilsson, L., Baranov, V., Nagaeva, O., Isolation and characterization of exosomes from cultures of tissue explants and cell lines (2016) Curr Protoc Immunol, 115
  • Lunavat, T.R., Cheng, L., Einarsdottir, B.O., BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells (2017) Proc Natl Acad Sci U S A, 114 (29), pp. E5930-E5939. , http://www.pnas.org/lookup/doi/10.1073/pnas.1705206114, Available from
  • Gupta, A.K., Rusterholz, C., Huppertz, B., A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells (2005) Placenta, 26 (1), pp. 59-66. , http://linkinghub.elsevier.com/retrieve/pii/S0143400404001080, Available from
  • Holder, B.S., Tower, C.L., Forbes, K., Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1 (2012) Immunology, 136 (2), pp. 184-191
  • Perez-Gonzalez, R., Gauthier, S.A., Kumar, A., The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space (2012) J Biol Chem, 287 (51), pp. 43108-43115. , http://www.jbc.org/lookup/doi/10.1074/jbc.M112.404467, Available from
  • Vella, L.J., Scicluna, B.J., Cheng, L., A rigorous method to enrich for exosomes from brain tissue (2017) J Extracell Vesicles, 6 (1), p. 1348885. , http://www.ncbi.nlm.nih.gov/pubmed/28804598, Available from
  • Deng, Z.B., Poliakov, A., Hardy, R.W., Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance (2009) Diabetes, 58 (11), pp. 2498-2505. , http://www.ncbi.nlm.nih.gov/pubmed/19675137, Available from
  • Wang, G.J., Liu, Y., Qin, A., Thymus exosomes-like particles induce regulatory T cells (2008) J Immunol, 181 (8), pp. 5242-5248. , http://www.ncbi.nlm.nih.gov/pubmed/18832678, Available from
  • Kranendonk, M.E.G., Visseren, F.L.J., van Balkom, B.W.M., Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages (2014) Obesity (Silver Spring), 22 (5), pp. 1296-1308
  • Loyer, X., Zlatanova, I., Devue, C., Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction (2018) Circ Res, 123 (1), pp. 100-106. , http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.311326, Available from
  • Leroyer, A.S., Ebrahimian, T.G., Cochain, C., Microparticles from ischemic muscle promotes postnatal vasculogenesis (2009) Circulation, 119 (21), pp. 2808-2817. , http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.108.816710, Available from
  • Michaelis, M.L., Jiang, L., Michaelis, E.K., Isolation of synaptosomes, synaptic plasma membranes, and synaptic junctional complexes (2017) Methods in molecular biology, pp. 107-119. , http://www.ncbi.nlm.nih.gov/pubmed/27943187, Clifton, NJ: Available from,. In:,. p
  • Zhou, H., Yuen, P.S., Pisitkun, T., Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery (2006) Kidney Int, 69 (8), pp. 1471-1476. , http://www.ncbi.nlm.nih.gov/pubmed/16501490, Available from
  • Vila-Liante, V., Sánchez-López, V., Martínez-Sales, V., Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters (2016) Clin Chem Lab Med, 54 (11), pp. 1759-1767. , https://www.degruyter.com/view/j/cclm.2016.54.issue-11/cclm-2016-0036/cclm-2016-0036.xml, Available from
  • Kriebardis, A.G., Antonelou, M.H., Georgatzakou, H.T., Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects (2016) Blood Transfus, 14 (2), pp. 228-237. , http://www.ncbi.nlm.nih.gov/pubmed/27136430, Available from
  • Lőrincz, Á.M., Timár, C.I., Marosvári, K.A., Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes (2014) J Extracell Vesicles, 3 (1), p. 25465. , https://www.tandfonline.com/doi/full/10.3402/jev.v3.25465, Available from
  • Bosch, S., de Beaurepaire, L., Allard, M., Trehalose prevents aggregation of exosomes and cryodamage (2016) Sci Rep, 6 (1), p. 36162. , http://www.nature.com/articles/srep36162, Available from
  • Maroto, R., Zhao, Y., Jamaluddin, M., Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses (2017) J Extracell Vesicles, 6 (1), p. 1359478. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359478, Available from
  • Jin, Y., Chen, K., Wang, Z., DNA in serum extracellular vesicles is stable under different storage conditions (2016) BMC Cancer, 16 (1), p. 753. , http://www.ncbi.nlm.nih.gov/pubmed/27662833, Available from
  • Jeyaram, A., Jay, S.M., Preservation and storage stability of extracellular vesicles for therapeutic applications (2017) Aaps J, 20 (1), p. 1. , http://link.springer.com/10.1208/s12248-017-0160-y, Available from
  • Trummer, A., De Rop, C., Tiede, A., Recovery and composition of microparticles after snap-freezing depends on thawing temperature (2009) Blood Coagul Fibrinolysis, 20 (1), pp. 52-56. , https://insights.ovid.com/crossref?an=00001721-200901000-00010, Available from
  • Lener, T., Gimona, M., Aigner, L., Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper (2015) J Extracell Vesicles, 4, p. 30087. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4698466&tool=pmcentrez&rendertype=abstract, Available from
  • Reiner, A.T., Witwer, K.W., Van Balkom, B.W.M., Concise review: developing best-practice models for the therapeutic use of extracellular vesicles (2017) Stem Cells Transl Med, 6, p. 8
  • Clayton, A., Buschmann, D., Byrd, J.B., Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017 (2018) J Extracell Vesicles, 7 (1), p. 1473707. , https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1473707, Available from
  • Montis, C., Zendrini, A., Valle, F., Size distribution of extracellular vesicles by optical correlation techniques (2017) Colloids Surf B Biointerfaces, 158, pp. 331-338. , http://linkinghub.elsevier.com/retrieve/pii/S092777651730406X, Available from
  • Morales-Kastresana, A., Telford, B., Musich, T.A., Labeling extracellular vesicles for nanoscale flow cytometry (2017) Sci Rep, 7 (1), p. 1878. , http://www.nature.com/articles/s41598-017-01731-2, Available from
  • Corso, G., Mäger, I., Lee, Y., Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography (2017) Sci Rep, 7 (1), p. 11561. , http://www.nature.com/articles/s41598-017-10646-x, Available from
  • Welton, J.L., Webber, J.P., Botos, L.-A., Ready-made chromatography columns for extracellular vesicle isolation from plasma (2015) J Extracell Vesicles, 4, p. 27269. , http://www.tandfonline.com/doi/full/10.3402/jev.v4.27269, Available from
  • Vergauwen, G., Dhondt, B., Van Deun, J., Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research (2017) Sci Rep, 7 (1), p. 2704. , http://www.nature.com/articles/s41598-017-02599-y, Available from
  • Lobb, R.J., Becker, M., Wen, S.W., Optimized exosome isolation protocol for cell culture supernatant and human plasma (2015) J Extracell Vesicles, 4, p. 27031. , https://www.tandfonline.com/doi/full/10.3402/jev.v4.27031, Available from
  • Tan, C.Y., Lai, R.C., Wong, W., Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models (2014) Stem Cell Res Ther, 5 (3), p. 76. , http://stemcellres.com/content/5/3/76, Available from
  • Jong, A.Y., Wu, C.-H., Li, J., Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells (2017) J Extracell Vesicles, 6 (1), p. 1294368. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1294368, Available from
  • Heinemann, M.L., Ilmer, M., Silva, L.P., Benchtop isolation and characterization of functional exosomes by sequential filtration (2014) J Chromatogr A, 1371, pp. 125-135. , http://linkinghub.elsevier.com/retrieve/pii/S0021967314015908, Available from
  • Heinemann, M.L., Vykoukal, J., Sequential filtration: A gentle method for the isolation of functional extracellular vesicles (2017) Methods in molecular biology, pp. 33-41. , http://www.ncbi.nlm.nih.gov/pubmed/28828646, Clifton, NJ: Available from,. In:,. p
  • Wei, Z., Batagov, A.O., Schinelli, S., Coding and noncoding landscape of extracellular RNA released by human glioma stem cells (2017) Nat Commun, 8 (1), p. 1145. , http://www.nature.com/articles/s41467-017-01196-x, Available from
  • Lamparski, H.G., Metha-Damani, A., Yao, J.Y., Production and characterization of clinical grade exosomes derived from dendritic cells (2002) J Immunol Meth, 270 (2), pp. 211-226. , http://www.ncbi.nlm.nih.gov/pubmed/12379326, Available from
  • Escudier, B., Dorval, T., Chaput, N., Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial (2005) J Transl Med, 3 (1), p. 10. , http://www.ncbi.nlm.nih.gov/pubmed/15740633, Available from
  • Roda, B., Zattoni, A., Reschiglian, P., Field-flow fractionation in bioanalysis: A review of recent trends (2009) Anal Chim Acta, 635 (2), pp. 132-143. , http://linkinghub.elsevier.com/retrieve/pii/S0003267009000865, Available from
  • Zhang, H., Freitas, D., Kim, H.S., Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation (2018) Nat Cell Biol, 20 (3), pp. 332-343. , http://www.ncbi.nlm.nih.gov/pubmed/29459780, Available from
  • Yang, J.S., Lee, J.C., Byeon, S.K., Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry (2017) Anal Chem, 89 (4), pp. 2488-2496. , http://pubs.acs.org/doi/10.1021/acs.analchem.6b04634, Available from
  • Agarwal, K., Saji, M., Lazaroff, S.M., Analysis of exosome release as a cellular response to MAPK pathway inhibition (2015) Langmuir, 31, pp. 5440-5448. , http://www.ncbi.nlm.nih.gov/pubmed/25915504, Available from
  • Liu, C., Guo, J., Tian, F., Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows (2017) ACS Nano, 11 (7), pp. 6968-6976. , http://pubs.acs.org/doi/10.1021/acsnano.7b02277, Available from
  • Ibsen, S.D., Wright, J., Lewis, J.M., Rapid isolation and detection of exosomes and associated biomarkers from plasma (2017) ACS Nano, 11 (7), pp. 6641-6651. , http://pubs.acs.org/doi/10.1021/acsnano.7b00549, Available from
  • Lewis, J.M., Vyas, A.D., Qiu, Y., Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood (2018) ACS Nano, 12 (4), pp. 3311-3320. , http://pubs.acs.org/doi/10.1021/acsnano.7b08199, Available from
  • Lee, K., Shao, H., Weissleder, R., Acoustic purification of extracellular microvesicles (2015) ACS Nano, 9 (3), pp. 2321-2327. , http://pubs.acs.org/doi/10.1021/nn506538f, Available from
  • Satzer, P., Wellhoefer, M., Jungbauer, A., Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography (2014) J Chromatogr A, 1349, pp. 44-49. , http://linkinghub.elsevier.com/retrieve/pii/S0021967314006979, Available from
  • Mol, E.A., Goumans, M.-J., Doevendans, P.A., Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation (2017) Nanomedicine, 13 (6), pp. 2061-2065. , http://linkinghub.elsevier.com/retrieve/pii/S1549963417300540, Available from
  • de Menezes-Neto, A., Sáez, M.J.F., Lozano-Ramos, I., Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals (2015) J Extracell Vesicles, 4, p. 27378. , http://www.ncbi.nlm.nih.gov/pubmed/26154623, Available from
  • Kosanović, M., Milutinović, B., Goč, S., Ion-exchange chromatography purification of extracellular vesicles (2017) Biotechniques, 63 (2), pp. 65-71. , https://www.future-science.com/doi/10.2144/000114575, Available from
  • Heath, N., Grant, L., De Oliveira, T.M., Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography (2018) Sci Rep, 8 (1), p. 5730. , http://www.ncbi.nlm.nih.gov/pubmed/29636530, Available from
  • Kim, D., Nishida, H., An, S.Y., Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI (2016) Proc Natl Acad Sci, 113 (1), pp. 170-175. , http://www.ncbi.nlm.nih.gov/pubmed/26699510, Available from
  • Merchant, M.L., Powell, D.W., Wilkey, D.W., Microfiltration isolation of human urinary exosomes for characterization by MS (2010) PROTEOMICS - Clin Appl, 4 (1), pp. 84-96. , http://www.ncbi.nlm.nih.gov/pubmed/21137018, Available from
  • Higginbotham, J.N., Zhang, Q., Jeppesen, D.K., Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting (2016) J Extracell Vesicles, 5, p. 29254. , http://www.ncbi.nlm.nih.gov/pubmed/27345057, Available from
  • Groot Kormelink, T., Arkesteijn, G.J.A., Nauwelaers, F.A., Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry (2016) Cytometry A, 89 (2), pp. 135-147. , http://www.ncbi.nlm.nih.gov/pubmed/25688721, Available from
  • Atkin-Smith, G.K., Paone, S., Zanker, D.J., Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting (2017) Sci Rep, 7, p. 39846. , http://www.nature.com/articles/srep39846, Available from
  • Minciacchi, V.R., Spinelli, C., Reis-Sobreiro, M., MYC mediates large oncosome-induced fibroblast reprogramming in prostate cancer (2017) Cancer Res, 77 (9), pp. 2306-2317. , http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-16-2942, Available from
  • Wunsch, B.H., Smith, J.T., Gifford, S.M., Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm (2016) Nat Nanotechnol, 11 (11), pp. 936-940. , http://www.nature.com/articles/nnano.2016.134, Available from
  • Echevarria, J., Royo, F., Pazos, R., Microarray-based identification of lectins for the purification of human urinary extracellular vesicles directly from urine samples (2014) Chembiochem, 15 (11), pp. 1621-1626
  • Ghosh, A., Davey, M., Chute, I.C., Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins (2014) PLoS One, 9 (10). , http://dx.plos.org/10.1371/journal.pone.0110443, Available from
  • Balaj, L., Atai, N.A., Chen, W., Heparin affinity purification of extracellular vesicles (2015) Sci Rep, 5, p. 10266. , http://www.ncbi.nlm.nih.gov/pubmed/25988257, Available from
  • Fang, X., Duan, Y., Adkins, G.B., Highly efficient exosome isolation and protein analysis by an integrated nanomaterial-based platform (2018) Anal Chem, 90 (4), pp. 2787-2795. , http://pubs.acs.org/doi/10.1021/acs.analchem.7b04861, Available from
  • Sharma, P., Ludwig, S., Muller, L., Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma (2018) J Extracell Vesicles, 7 (1), p. 1435138. , https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1435138, Available from
  • Brett, S.I., Lucien, F., Guo, C., Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples (2017) Prostate, 77 (13), pp. 1335-1343
  • Nakai, W., Yoshida, T., Diez, D., A novel affinity-based method for the isolation of highly purified extracellular vesicles (2016) Sci Rep, 6 (1), p. 33935. , http://www.nature.com/articles/srep33935, Available from
  • Welton, J.L., Loveless, S., Stone, T., Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis (2017) J Extracell Vesicles, 6 (1), p. 1369805. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1369805, Available from
  • Lai, R.C., Tan, S.S., Yeo, R.W.Y., MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA (2016) J Extracell Vesicles, 5 (1), p. 29828. , https://www.tandfonline.com/doi/full/10.3402/jev.v5.29828, Available from
  • Gallart-Palau, X., Serra, A., Wong, A.S.W., Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR) (2015) Sci Rep, 5 (1), p. 14664. , http://www.nature.com/articles/srep14664, Available from
  • Shin, H., Han, C., Labuz, J.M., High-yield isolation of extracellular vesicles using aqueous two-phase system (2015) Sci Rep, 5 (1), p. 13103. , http://www.nature.com/articles/srep13103, Available from
  • Hurwitz, S.N., Nkosi, D., Conlon, M.M., CD63 regulates epstein-barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling (2017) J Virol, 91 (5), pp. e02216-e2251. , http://jvi.asm.org/lookup/doi/10.1128/JVI.02251-16, Available from
  • Musante, L., Tataruch, D., Gu, D., A simplified method to recover urinary vesicles for clinical applications, and sample banking (2014) Sci Rep, 4 (1), p. 7532. , http://www.nature.com/articles/srep07532, Available from
  • Sedykh, S.E., Purvinish, L.V., Monogarov, A.S., Purified horse milk exosomes contain an unpredictable small number of major proteins (2017) Biochim Open, 4, pp. 61-72. , http://linkinghub.elsevier.com/retrieve/pii/S2214008517300056, Available from
  • Contreras-Naranjo, J.C., Wu, H.-J., Ugaz, V.M., Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine (2017) Lab Chip, 17 (21), pp. 3558-3577
  • Wu, M., Ouyang, Y., Wang, Z., Isolation of exosomes from whole blood by integrating acoustics and microfluidics (2017) Proc Natl Acad Sci U S A, 114 (40), pp. 10584-10589. , http://www.pnas.org/lookup/doi/10.1073/pnas.1709210114, Available from
  • Chen, C., Skog, J., Hsu, C.H., Microfluidic isolation and transcriptome analysis of serum microvesicles (2010) Lab Chip, 10 (4), pp. 505-511. , 2010/02/04
  • Liang, L.-G., Kong, M.-Q., Zhou, S., An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer (2017) Sci Rep, 7, p. 46224. , http://www.nature.com/articles/srep46224, Available from
  • Shin, S., Han, D., Park, M.C., Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems (2017) Sci Rep, 7 (1), p. 9907. , http://www.nature.com/articles/s41598-017-08826-w, Available from
  • Yasui, T., Yanagida, T., Ito, S., Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires (2017) Sci Adv, 3 (12), p. e1701133. , http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1701133, Available from
  • Zhao, Z., Yang, Y., Zeng, Y., A microfluidic exosearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis (2016) Lab Chip, 16 (3), pp. 489-496
  • Wang, Z., Wu, H., Fine, D., Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles (2013) Lab Chip, 13 (15), pp. 2879-2882
  • Reátegui, E., van der Vos, K.E., Lai, C.P., Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles (2018) Nat Commun, 9 (1), p. 175. , http://www.nature.com/articles/s41467-017-02261-1, Available from
  • Böing, A.N., van der Pol, E., Grootemaat, A.E., Single-step isolation of extracellular vesicles by size-exclusion chromatography (2014) J Extracell Vesicles, 3, p. 23430. , https://www.tandfonline.com/doi/full/10.3402/jev.v3.23430, Available from
  • Stranska, R., Gysbrechts, L., Wouters, J., Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma (2018) J Transl Med, 16 (1), p. 1. , https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1374-6, Available from
  • Enderle, D., Spiel, A., Coticchia, C.M., Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method (2015) PLoS One, 10 (8). , http://dx.plos.org/10.1371/journal.pone.0136133, Available from
  • Jeppesen, D.K., Hvam, M.L., Primdahl-Bengtson, B., Comparative analysis of discrete exosome fractions obtained by differential centrifugation (2014) J Extracell Vesicles, 3, p. 25011. , http://www.ncbi.nlm.nih.gov/pubmed/25396408, Available from
  • Livshits, M.A., Khomyakova, E., Evtushenko, E.G., Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol (2015) Sci Rep, 5 (1), p. 17319. , http://www.ncbi.nlm.nih.gov/pubmed/26616523, Available from
  • Jang, S.C., Kim, O.Y., Yoon, C.M., Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors (2013) ACS Nano, 7 (9), pp. 7698-7710. , http://pubs.acs.org/doi/10.1021/nn402232g, Available from
  • Li, K., Wong, D.K., Hong, K.Y., Cushioned-density gradient ultracentrifugation (C-DGUC): a refined and high performance method for the isolation, characterization, and use of exosomes (2018) Methods Mol Biol, 1740, pp. 69-83. , http://link.springer.com/10.1007/978-1-4939-7652-2_7, Available from
  • Van Deun, J., Mestdagh, P., Agostinis, P., EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research (2017) Nat Methods, 14 (3), pp. 228-232. , http://www.ncbi.nlm.nih.gov/pubmed/28245209, Available from
  • Mitchell, J.P., Court, J., Mason, M.D., Increased exosome production from tumour cell cultures using the integra celline culture system (2008) J Immunol Meth, 335 (1-2), pp. 98-105. , http://linkinghub.elsevier.com/retrieve/pii/S0022175908000926, Available from
  • Ortiz, A., Sanchez-Niño, M.D., Sanz, A.B., The meaning of urinary creatinine concentration (2011) Kidney Int, 79 (7), p. 791. , http://linkinghub.elsevier.com/retrieve/pii/S0085253815548849, Available from
  • Cointe, S., Judicone, C., Robert, S., Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop (2017) J Thromb Haemost, 15 (1), pp. 187-193
  • Krishnan, S.R., Luk, F., Brown, R.D., Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma (2016) Neoplasia, 18 (1), pp. 25-32. , http://linkinghub.elsevier.com/retrieve/pii/S1476558615001566, Available from
  • McVey, M.J., Spring, C.M., Semple, J.W., Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres (2016) Am J Physiol Lung Cell Mol Physiol, 310 (9), pp. L802-L814. , http://www.physiology.org/doi/10.1152/ajplung.00369.2015, Available from
  • Atkin-Smith, G.K., Tixeira, R., Paone, S., A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure (2015) Nat Commun, 6, p. 7439. , http://www.nature.com/doifinder/10.1038/ncomms8439, Available from
  • van der Vlist, E.J., Nolte-’T Hoen, E.N., Stoorvogel, W., Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry (2012) Nat Protoc, 7 (7), pp. 1311-1326. , http://www.ncbi.nlm.nih.gov/pubmed/22722367, 2012/06/23, Available from
  • van der Pol, E., van Gemert, M.J., Sturk, A., Single vs. swarm detection of microparticles and exosomes by flow cytometry (2012) J Thromb Haemost, 10 (5), pp. 919-930. , http://www.ncbi.nlm.nih.gov/pubmed/22394434, 2012/03/08, Available from
  • Pospichalova, V., Svoboda, J., Dave, Z., Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer (2015) J Extracell Vesicles, 4 (1), p. 25530. , https://www.tandfonline.com/doi/full/10.3402/jev.v4.25530, Available from
  • Tian, Y., Ma, L., Gong, M., Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry (2018) ACS Nano, 12 (1), pp. 671-680. , http://pubs.acs.org/doi/10.1021/acsnano.7b07782, Available from
  • McVey, M.J., Spring, C.M., Kuebler, W.M., Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter (2018) J Extracell Vesicles, 7 (1), p. 1454776. , https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1454776, Available from
  • Nolan, J.P., Stoner, S.A., A trigger channel threshold artifact in nanoparticle analysis (2013) Cytometry A, 83 (3), pp. 301-305
  • Arraud, N., Linares, R., Tan, S., Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration (2014) J Thromb Haemost, 12 (5), pp. 614-627
  • Arraud, N., Gounou, C., Linares, R., A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles (2015) J Thromb Haemost, 13 (2), pp. 237-247
  • Maas, S.L.N., de Vrij, J., van der Vlist, E.J., Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics (2015) J Control Release, 200, pp. 87-96. , http://linkinghub.elsevier.com/retrieve/pii/S0168365914008384, Available from
  • de Vrij, J., Maas, S.L., van Nispen, M., Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing (2013) Nanomedicine (Lond), , http://www.ncbi.nlm.nih.gov/pubmed/23384702, Available from
  • Obeid, S., Ceroi, A., Mourey, G., Development of a NanoBioAnalytical platform for on-chip qualification and quantification of platelet-derived microparticles (2017) Biosens Bioelectron, 93, pp. 250-259. , https://linkinghub.elsevier.com/retrieve/pii/S0956566316308569, Available from
  • Libregts, S.F.W.M., Arkesteijn, G.J.A., Németh, A., Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest (2018) J Thromb Haemost, 16 (7), pp. 1423-1436
  • van der Pol, E., Hoekstra, A.G., Sturk, A., Optical and non-optical methods for detection and characterization of microparticles and exosomes (2010) J Thromb Haemost, 8 (12), pp. 2596-2607. , http://www.ncbi.nlm.nih.gov/pubmed/20880256, Available from
  • Carnell-Morris, P., Tannetta, D., Siupa, A., Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis (2017) Methods Mol Biol, 1660, pp. 153-173. , http://link.springer.com/10.1007/978-1-4939-7253-1_13, Available from
  • Takov, K., Yellon, D.M., Davidson, S.M., Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes (2017) J Extracell Vesicles, 6 (1), p. 1388731. , http://www.ncbi.nlm.nih.gov/pubmed/29184625, Available from
  • van der Pol, E., Coumans, F.A.W., Grootemaat, A.E., Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing (2014) J Thromb Haemost, 12 (7), pp. 1182-1192. , http://www.ncbi.nlm.nih.gov/pubmed/24818656, Available from
  • Dragovic, R.A., Gardiner, C., Brooks, A.S., Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis (2011) Nanomedicine, 7 (6), pp. 780-788. , http://www.ncbi.nlm.nih.gov/pubmed/21601655, Available from
  • Gardiner, C., Ferreira, Y.J., Dragovic, R.A., Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis (2013) J Extracell Vesicles, 2, p. 19671. , Available from
  • Osteikoetxea, X., Balogh, A., Szabó-Taylor, K., Improved characterization of EV preparations based on protein to lipid ratio and lipid properties (2015) PLoS One, 10 (3). , http://dx.plos.org/10.1371/journal.pone.0121184, Available from
  • Benmoussa, A., Ly, S., Shan, S.T., A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk (2017) J Extracell Vesicles, 6 (1), p. 1401897. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1401897, Available from
  • Mihály, J., Deák, R., Szigyártó, I.C., Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations (2017) Biochim Biophys Acta, 1859 (3), pp. 459-466. , http://linkinghub.elsevier.com/retrieve/pii/S000527361630390X, Available from
  • Turchinovich, A., Weiz, L., Langheinz, A., Characterization of extracellular circulating microRNA (2011) Nucleic Acids Res, 39 (16), pp. 7223-7233. , http://www.ncbi.nlm.nih.gov/pubmed/21609964, Available from
  • Arroyo, J.D., Chevillet, J.R., Kroh, E.M., Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma (2011) Proc Natl Acad Sci U S A, 108 (12), pp. 5003-5008. , http://www.ncbi.nlm.nih.gov/pubmed/21383194, Available from
  • Vickers, K.C., Palmisano, B.T., Shoucri, B.M., MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins (2011) Nat Cell Biol, 13 (4), pp. 423-433. , http://www.ncbi.nlm.nih.gov/pubmed/21423178, Available from
  • Duijvesz, D., Versluis, C.Y.L., van der Fels, C.A.M., Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer (2015) Int J Cancer, 137 (12), pp. 2869-2878
  • Suárez, H., Gámez-Valero, A., Reyes, R., A bead-assisted flow cytometry method for the semi-quantitative analysis of extracellular vesicles (2017) Sci Rep, 7 (1), p. 11271. , http://www.nature.com/articles/s41598-017-11249-2, Available from
  • Koliha, N., Wiencek, Y., Heider, U., A novel multiplex bead-based platform highlights the diversity of extracellular vesicles (2016) J Extracell Vesicles, 5, p. 29975. , http://www.ncbi.nlm.nih.gov/pubmed/26901056, Available from
  • Xia, Y., Liu, M., Wang, L., A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes (2017) Biosens Bioelectron, 92, pp. 8-15. , http://linkinghub.elsevier.com/retrieve/pii/S0956566317300635, Available from
  • Liang, K., Liu, F., Fan, J., Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring (2017) Nat Biomed Eng, 1 (4), p. 0021. , http://www.nature.com/articles/s41551-016-0021, Available from
  • Rupert, D.L.M., Lässer, C., Eldh, M., Determination of exosome concentration in solution using surface plasmon resonance spectroscopy (2014) Anal Chem, 86 (12), pp. 5929-5936. , http://pubs.acs.org/doi/10.1021/ac500931f, Available from
  • Webber, J., Clayton, A., How pure are your vesicles? (2013) J Extracell Vesicles, 2, p. 19861. , http://www.ncbi.nlm.nih.gov/pubmed/24009896, Available from
  • Maiolo, D., Paolini, L., Di Noto, G., Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles (2015) Anal Chem, 87 (8), pp. 4168-4176. , http://pubs.acs.org/doi/abs/10.1021/ac504861d, Available from
  • Lai, R.C., Arslan, F., Lee, M.M., Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury (2010) Stem Cell Res, 4 (3), pp. 214-222
  • Cvjetkovic, A., Lotvall, J., Lasser, C., The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles (2014) J Extracell Vesicles, 3, p. 23111. , http://www.ncbi.nlm.nih.gov/pubmed/24678386, Available from
  • Valkonen, S., van der Pol, E., Böing, A., Biological reference materials for extracellular vesicle studies (2017) Eur J Pharm Sci, 98, pp. 4-16. , http://linkinghub.elsevier.com/retrieve/pii/S0928098716303578, Available from
  • Minciacchi, V.R., You, S., Spinelli, C., Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles (2015) Oncotarget, 6 (13), pp. 11327-11341. , http://www.oncotarget.com/fulltext/3598, Available from
  • Keerthikumar, S., Gangoda, L., Liem, M., Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes (2015) Oncotarget, 6 (17), pp. 15375-15396. , http://www.oncotarget.com/fulltext/3801, Available from
  • Haraszti, R.A., Didiot, M.-C., Sapp, E., High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources (2016) J Extracell Vesicles, 5 (1), p. 32570. , https://www.tandfonline.com/doi/full/10.3402/jev.v5.32570, Available from
  • Clark, D.J., Fondrie, W.E., Liao, Z., Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis (2015) Anal Chem, 87 (20), pp. 10462-10469. , http://pubs.acs.org/doi/10.1021/acs.analchem.5b02586, Available from
  • Durcin, M., Fleury, A., Taillebois, E., Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles (2017) J Extracell Vesicles, 6 (1), p. 1305677. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1305677, Available from
  • Kowal, J., Arras, G., Colombo, M., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes (2016) Proc Natl Acad Sci, 113 (8), pp. E968-E977. , http://www.pnas.org/lookup/doi/10.1073/pnas.1521230113, Available from
  • Xu, R., Greening, D.W., Rai, A., Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct (2015) Methods, 87, pp. 11-25. , http://linkinghub.elsevier.com/retrieve/pii/S1046202315001541, Available from
  • Willms, E., Johansson, H.J., Mäger, I., Cells release subpopulations of exosomes with distinct molecular and biological properties (2016) Sci Rep, 6 (1), p. 22519. , http://www.nature.com/articles/srep22519, Available from
  • Meehan, B., Rak, J., Di Vizio, D., Oncosomes - large and small: what are they, where they came from? (2016) J Extracell Vesicles, 5, p. 33109. , http://www.ncbi.nlm.nih.gov/pubmed/27680302, Available from
  • Sódar, B.W., Kittel, Á., Pálóczi, K., Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection (2016) Sci Rep, 6, p. 24316. , http://www.ncbi.nlm.nih.gov/pubmed/27087061, Available from
  • Karimi, N., Cvjetkovic, A., Jang, S.C., Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins (2018) Cell Mol Life Sci, 75 (15), pp. 2873-2886. , http://link.springer.com/10.1007/s00018-018-2773-4, Available from
  • Østergaard, O., Nielsen, C.T., Iversen, L.V., Quantitative proteome profiling of normal human circulating microparticles (2012) J Proteome Res, 11 (4), pp. 2154-2163. , http://pubs.acs.org/doi/10.1021/pr200901p, Available from
  • Musante, L., Saraswat, M., Duriez, E., Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment (2012) PLoS One, 7 (7). , http://www.ncbi.nlm.nih.gov/pubmed/22808001, Available from
  • Van Deun, J., Mestdagh, P., Sormunen, R., The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling (2014) J Extracell Vesicles, 3. , http://www.ncbi.nlm.nih.gov/pubmed/25317274, Available from
  • McKenzie, A.J., Hoshino, D., Hong, N.H., KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes (2016) Cell Rep, 15 (5), pp. 978-987. , http://www.ncbi.nlm.nih.gov/pubmed/27117408, Available from
  • Melo, S.A.A., Sugimoto, H., O’Connell, J.T., Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis (2014) Cancer Cell, 26 (5), pp. 707-721. , http://www.ncbi.nlm.nih.gov/pubmed/25446899, Available from
  • Buck, A.H., Coakley, G., Simbari, F., Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity (2014) Nat Commun, 5 (1), p. 5488. , http://www.nature.com/articles/ncomms6488, Available from
  • Tkach, M., Kowal, J., Zucchetti, A.E., Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes (2017) Embo J., 36 (20), pp. 3012-3028. , http://emboj.embopress.org/lookup/doi/10.15252/embj.201696003, Available from
  • Jorgensen, M.M., Baek, R., Varming, K., Potentials and capabilities of the Extracellular Vesicle (EV) Array (2015) J Extracell Vesicles, 4, p. 26048. , http://www.ncbi.nlm.nih.gov/pubmed/25862471, Available from
  • Gool, E.L., Stojanovic, I., Schasfoort, R.B.M., Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles (2017) Clin Chem, 63 (10), pp. 1633-1641. , http://www.clinchem.org/lookup/doi/10.1373/clinchem.2016.271049, Available from
  • Zhu, L., Wang, K., Cui, J., Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging (2014) Anal Chem, 86 (17), pp. 8857-8864. , http://pubs.acs.org/doi/10.1021/ac5023056, Available from
  • Shao, H., Im, H., Castro, C.M., New technologies for analysis of extracellular vesicles (2018) Chem Rev, 118 (4), pp. 1917-1950. , http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00534, Available from
  • Skotland, T., Sandvig, K., Llorente, A., Lipids in exosomes: current knowledge and the way forward (2017) Prog Lipid Res, 66, pp. 30-41. , http://linkinghub.elsevier.com/retrieve/pii/S0163782716300492, Available from
  • Record, M., Carayon, K., Poirot, M., Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies (2014) Biochim Biophys Acta, 1841 (1), pp. 108-120. , http://linkinghub.elsevier.com/retrieve/pii/S1388198113002199, Available from
  • Nielsen, M.H., Beck-Nielsen, H., Andersen, M.N., A flow cytometric method for characterization of circulating cell-derived microparticles in plasma (2014) J Extracell Vesicles, 3 (1), p. 20795. , https://www.tandfonline.com/doi/full/10.3402/jev.v3.20795, Available from
  • de Gassart, A., Geminard, C., Fevrier, B., Lipid raft-associated protein sorting in exosomes (2003) Blood, 102 (13), pp. 4336-4344. , http://www.ncbi.nlm.nih.gov/pubmed/12881314, Available from
  • Gualerzi, A., Niada, S., Giannasi, C., Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells (2017) Sci Rep, 7 (1), p. 9820. , http://www.nature.com/articles/s41598-017-10448-1, Available from
  • Neri, T., Lombardi, S., Faìta, F., Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells (2016) Pulm Pharmacol Ther, 39, pp. 1-6. , http://www.ncbi.nlm.nih.gov/pubmed/27237042, Available from
  • de Rond, L., van der Pol, E., Hau, C.M., Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry (2018) Clin Chem, 64 (4), pp. 680-689. , http://www.clinchem.org/lookup/doi/10.1373/clinchem.2017.278978, Available from
  • Ullal, A.J., Pisetsky, D.S., Reich, C.F., Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems (2010) Cytometry A, 77 (3), pp. 294-301
  • Sansone, P., Savini, C., Kurelac, I., Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer (2017) Proc Natl Acad Sci U S A, 114 (43), pp. E9066-E9075. , http://www.pnas.org/lookup/doi/10.1073/pnas.1704862114, Available from
  • Crescitelli, R., Lässer, C., Szabó, T.G., Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes (2013) J Extracell Vesicles, 2 (1), p. 20677. , http://www.ncbi.nlm.nih.gov/pubmed/24223256, Available from
  • Nolte-’t Hoen, E.N., Buermans, H.P., Waasdorp, M., Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions (2012) Nucleic Acids Res, , http://www.ncbi.nlm.nih.gov/pubmed/22821563, Available from
  • Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs (2013) Nat Commun, 4, p. 2980. , http://www.ncbi.nlm.nih.gov/pubmed/24356509, 2013/12/21, Available from
  • Vojtech, L., Woo, S., Hughes, S., Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions (2014) Nucleic Acids Res, 42 (11), pp. 7290-7304. , https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku347, Available from
  • Tosar, J.P., Gambaro, F., Sanguinetti, J., Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines (2015) Nucleic Acids Res, 43 (11), pp. 5601-5616. , http://www.ncbi.nlm.nih.gov/pubmed/25940616, Available from
  • van Balkom, B.W.M., Eisele, A.S., Pegtel, D.M., Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting (2015) J Extracell Vesicles, 4 (1), p. 26760. , https://www.tandfonline.com/doi/full/10.3402/jev.v4.26760, Available from
  • Li, K., Rodosthenous, R.S., Kashanchi, F., Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA strategic workshop (2018) JCI Insight, 3 (7). , https://insight.jci.org/articles/view/98942, Available from
  • Chen, M., Xu, R., Ji, H., Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line (2016) Sci Rep, 6 (1), p. 38397. , http://www.nature.com/articles/srep38397, Available from
  • Lai, C.P., Kim, E.Y., Badr, C.E., Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters (2015) Nat Commun, 6 (May), p. 7029. , et al
  • Ter-Ovanesyan, D., Kowal, E.J.K., Regev, A., Imaging of isolated extracellular vesicles using fluorescence microscopy (2017) Methods Mol Biol, 1660, pp. 233-241. , http://link.springer.com/10.1007/978-1-4939-7253-1_19, Available from
  • Wu, Y., Deng, W., Klinke, D.J., Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers (2015) Analyst, 140 (19), pp. 6631-6642. , http://www.ncbi.nlm.nih.gov/pubmed/26332016, Available from
  • Linares, R., Tan, S., Gounou, C., High-speed centrifugation induces aggregation of extracellular vesicles (2015) J Extracell Vesicles, 4, p. 29509. , http://www.journalofextracellularvesicles.net/index.php/jev/article/view/29509, Available from
  • Höög, J.L., Lötvall, J., Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy (2015) J Extracell Vesicles, 4, p. 28680. , http://www.ncbi.nlm.nih.gov/pubmed/26563734, Available from
  • Sharma, S., Rasool, H.I., Palanisamy, V., Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy (2010) ACS Nano, 4 (4), pp. 1921-1926. , http://www.ncbi.nlm.nih.gov/pubmed/20218655, Available from
  • Treps, L., Perret, R., Edmond, S., Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles (2017) J Extracell Vesicles, 6 (1), p. 1359479. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359479, Available from
  • Chen, C., Zong, S., Wang, Z., Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope (2016) ACS Appl Mater Interfaces, 8 (39), pp. 25825-25833. , http://pubs.acs.org/doi/10.1021/acsami.6b09442, Available from
  • Mehdiani, A., Maier, A., Pinto, A., An innovative method for exosome quantification and size measurement (2015) J Vis Exp, 95, p. 50974. , http://www.jove.com/video/50974/an-innovative-method-for-exosome-quantification-and-size-measurement, Available from
  • Tatischeff, I., Larquet, E., Falcón-Pérez, J.M., Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy (2012) J Extracell Vesicles, 1 (1), p. 19179. , https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.19179, Available from
  • Carney, R.P., Hazari, S., Colquhoun, M., Multispectral optical tweezers for biochemical fingerprinting of CD9-positive exosome subpopulations (2017) Anal Chem, 89 (10), pp. 5357-5363. , http://pubs.acs.org/doi/10.1021/acs.analchem.7b00017, Available from
  • Smith, Z.J., Lee, C., Rojalin, T., Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content (2015) J Extracell Vesicles, 4 (1), p. 28533. , https://www.tandfonline.com/doi/full/10.3402/jev.v4.28533, Available from
  • Stoner, S.A., Duggan, E., Condello, D., High sensitivity flow cytometry of membrane vesicles (2016) Cytom Part A, 89 (2), pp. 196-206. , http://www.ncbi.nlm.nih.gov/pubmed/26484737, Available from
  • Nolan, J.P., Jones, J.C., Detection of platelet vesicles by flow cytometry (2017) Platelets, 28 (3), pp. 256-262. , http://www.ncbi.nlm.nih.gov/pubmed/28277059, Available from
  • Sitar, S., Kejžar, A., Pahovnik, D., Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation (2015) Anal Chem, 87 (18), pp. 9225-9233. , http://pubs.acs.org/doi/10.1021/acs.analchem.5b01636, Available from
  • Heusermann, W., Hean, J., Trojer, D., Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER (2016) J Cell Biol, 213 (2), pp. 173-184. , http://www.ncbi.nlm.nih.gov/pubmed/27114500, Available from
  • Wyss, R., Grasso, L., Wolf, C., Molecular and dimensional profiling of highly purified extracellular vesicles by fluorescence fluctuation spectroscopy (2014) Anal Chem, 86 (15), pp. 7229-7233. , http://pubs.acs.org/doi/10.1021/ac501801m, Available from
  • Baietti, M.F., Zhang, Z., Mortier, E., Syndecan–syntenin–ALIX regulates the biogenesis of exosomes (2012) Nat Cell Biol, 14 (7), pp. 677-685
  • Erdbrügger, U., Rudy, C.K., Etter, M.E., Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry (2014) Cytometry A, 85 (9), pp. 756-770
  • Headland, S.E., Jones, H.R., Asv, D., Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry (2014) Sci Rep, 4 (1), p. 5237. , http://www.nature.com/articles/srep05237, Available from
  • Lee, K., Fraser, K., Ghaddar, B., Multiplexed profiling of single extracellular vesicles (2018) ACS Nano, 12 (1), pp. 494-503. , http://pubs.acs.org/doi/10.1021/acsnano.7b07060, Available from
  • Daaboul, G.G., Lopez, C.A., Yurt, A., Label-free optical biosensors for virus detection and characterization (2012) IEEE J Sel Top Quantum Electron, 18 (4), pp. 1422-1433
  • Daaboul, G.G., Freedman, D.S., Scherr, S.M., Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses (2017) PLoS One., 12 (6), p. e0179728
  • van der Pol, E., Sturk, A., van Leeuwen, T., Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation (2018) J Thromb Haemost, 16 (6), pp. 1236-1245
  • Cvjetkovic, A., Jang, S.C., Konečná, B., Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation (2016) Sci Rep, 6 (1), p. 36338. , http://www.nature.com/articles/srep36338, Available from
  • Deregibus, M.C., Cantaluppi, V., Calogero, R., Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA (2007) Blood, 110 (7), pp. 2440-2448. , http://www.bloodjournal.org/cgi/doi/10.1182/blood-2007-03-078709, Available from
  • Sharma, A., Mariappan, M., Appathurai, S., In vitro dissection of protein translocation into the mammalian endoplasmic reticulum (2010) Methods Mol Biol, 619, pp. 339-363. , http://link.springer.com/10.1007/978-1-60327-412-8_20, Available from
  • Sung, B.H., Weaver, A.M., Exosome secretion promotes chemotaxis of cancer cells (2017) Cell Adh Migr, 11 (2), pp. 187-195. , https://www.tandfonline.com/doi/full/10.1080/19336918.2016.1273307, Available from
  • Osteikoetxea, X., Sódar, B., Németh, A., Differential detergent sensitivity of extracellular vesicle subpopulations (2015) Org Biomol Chem, 13 (38), pp. 9775-9782. , http://www.ncbi.nlm.nih.gov/pubmed/26264754, Available from
  • Parolini, I., Federici, C., Raggi, C., Microenvironmental pH is a key factor for exosome traffic in tumor cells (2009) J Biol Chem, 284 (49), pp. 34211-34222. , http://www.jbc.org/lookup/doi/10.1074/jbc.M109.041152, Available from
  • Franzen, C.A., Simms, P.E., Van Huis, A.F., Characterization of uptake and internalization of exosomes by bladder cancer cells (2014) Biomed Res Int, 2014, p. 619829. , http://www.hindawi.com/journals/bmri/2014/619829/, Available from
  • Christianson, H.C., Svensson, K.J., van Kuppevelt, T.H., Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity (2013) Proc Natl Acad Sci U S A, 110 (43), pp. 17380-17385. , http://www.pnas.org/cgi/doi/10.1073/pnas.1304266110, Available from
  • Mulcahy, L.A., Pink, R.C., Carter, D.R.F., Routes and mechanisms of extracellular vesicle uptake (2014) J Extracell Vesicles, 3, p. 24641. , https://www.tandfonline.com/doi/full/10.3402/jev.v3.24641, Available from
  • Wahlgren, J., Karlson, T.D.L., Glader, P., Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling (2012) PLoS One, 7 (11). , http://dx.plos.org/10.1371/journal.pone.0049723, Available from
  • Szabó, G.T., Tarr, B., Pálóczi, K., Critical role of extracellular vesicles in modulating the cellular effects of cytokines (2014) Cell Mol Life Sci, 71 (20), pp. 4055-4067. , http://link.springer.com/10.1007/s00018-014-1618-z, Available from
  • Gámez-Valero, A., Monguió-Tortajada, M., Carreras-Planella, L., Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents (2016) Sci Rep, 6 (1), p. 33641. , http://www.nature.com/articles/srep33641, Available from
  • Paolini, L., Zendrini, A., Di Noto, G., Residual matrix from different separation techniques impacts exosome biological activity (2016) Sci Rep, 6 (1), p. 23550. , http://www.nature.com/articles/srep23550, Available from
  • Gyorgy, B., Modos, K., Pallinger, E., Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters (2011) Blood, 117 (4), pp. e39-e48. , http://www.ncbi.nlm.nih.gov/pubmed/21041717, Available from
  • Benedikter, B.J., Bouwman, F.G., Vajen, T., Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies (2017) Sci Rep, 7 (1), p. 15297. , http://www.nature.com/articles/s41598-017-15717-7, Available from
  • Trajkovic, K., Hsu, C., Chiantia, S., Ceramide triggers budding of exosome vesicles into multivesicular endosomes (2008) Science, 319 (5867), pp. 1244-1247. , http://www.sciencemag.org/cgi/doi/10.1126/science.1153124, Available from
  • Figuera-Losada, M., Stathis, M., Dorskind, J.M., Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties (2015) PLoS One, 10 (5). , http://dx.plos.org/10.1371/journal.pone.0124481, Available from
  • Dinkins, M.B., Enasko, J., Hernandez, C., Neutral sphingomyelinase-2 deficiency ameliorates alzheimer’s disease pathology and improves cognition in the 5XFAD mouse (2016) J Neurosci, 36 (33), pp. 8653-8667. , http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1429-16.2016, Available from
  • Cruz, F.F., Borg, Z.D., Goodwin, M., Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice (2015) Stem Cells Transl Med, 4 (11), pp. 1302-1316
  • Villarroya-Beltri, C., Baixauli, F., Mittelbrunn, M., ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins (2016) Nat Commun, 7, p. 13588. , http://www.nature.com/doifinder/10.1038/ncomms13588, Available from
  • Savina, A., Vidal, M., Colombo, M.I., The exosome pathway in K562 cells is regulated by Rab11 (2002) J Cell Sci, 115, pp. 2505-2515. , http://www.ncbi.nlm.nih.gov/pubmed/12045221, Available from
  • Ostrowski, M., Carmo, N.B., Krumeich, S., Rab27a and Rab27b control different steps of the exosome secretion pathway (2010) Nat Cell Biol, 12 (1), pp. 13-19. , http://www.ncbi.nlm.nih.gov/pubmed/19966785, Available from
  • Hsu, C., Morohashi, Y., Yoshimura, S.-I., Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C (2010) J Cell Biol, 189 (2), pp. 223-232. , http://www.ncbi.nlm.nih.gov/pubmed/20404108, Available from
  • Hyenne, V., Apaydin, A., Rodriguez, D., RAL-1 controls multivesicular body biogenesis and exosome secretion (2015) J Cell Biol, 211 (1), pp. 27-37. , http://www.jcb.org/lookup/doi/10.1083/jcb.201504136, Available from
  • Gross, J.C., Chaudhary, V., Bartscherer, K., Active Wnt proteins are secreted on exosomes (2012) Nat Cell Biol, 14 (10), pp. 1036-1045. , http://www.nature.com/articles/ncb2574, Available from
  • Imjeti, N.S., Menck, K., Egea-Jimenez, A.L., Syntenin mediates SRC function in exosomal cell-to-cell communication (2017) Proc Natl Acad Sci U S A, 114 (47), pp. 12495-12500. , http://www.pnas.org/lookup/doi/10.1073/pnas.1713433114, Available from
  • Sinha, S., Hoshino, D., Hong, N.H., Cortactin promotes exosome secretion by controlling branched actin dynamics (2016) J Cell Biol, 214 (2), pp. 197-213. , http://www.jcb.org/lookup/doi/10.1083/jcb.201601025, Available from
  • Jackson, C.E., Scruggs, B.S., Schaffer, J.E., Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis (2017) Biophys J, 113 (6), pp. 1342-1352. , http://linkinghub.elsevier.com/retrieve/pii/S0006349517305714, Available from
  • Chalmin, F., Ladoire, S., Mignot, G., Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells (2010) J Clin Invest, 120 (2), pp. 457-471. , http://www.jci.org/articles/view/40483, Available from
  • Montecalvo, A., Larregina, A.T., Shufesky, W.J., Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes (2012) Blood, 119 (3), pp. 756-766. , http://www.ncbi.nlm.nih.gov/pubmed/22031862, Available from
  • Savina, A., Furlán, M., Vidal, M., Exosome release is regulated by a calcium-dependent mechanism in K562 cells (2003) J Biol Chem, 278 (22), pp. 20083-20090. , http://www.jbc.org/lookup/doi/10.1074/jbc.M301642200, Available from
  • Minakaki, G., Menges, S., Kittel, A., Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype (2018) Autophagy, 14 (1), pp. 98-119. , https://www.tandfonline.com/doi/full/10.1080/15548627.2017.1395992, Available from
  • Edgar, J.R., Manna, P.T., Nishimura, S., Tetherin is an exosomal tether (2016) Elife, 5, p. 17180. , https://elifesciences.org/articles/17180, Available from
  • Atai, N.A., Balaj, L., van Veen, H., Heparin blocks transfer of extracellular vesicles between donor and recipient cells (2013) J Neurooncol, , http://www.ncbi.nlm.nih.gov/pubmed/24002181, Available from
  • Wang, Q., Lu, Q., Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling (2017) Nat Commun, 8 (1), p. 709. , http://www.nature.com/articles/s41467-017-00767-2, Available from
  • Nabhan, J.F., Hu, R., Oh, R.S., Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein (2012) Proc Natl Acad Sci U S A, 109 (11), pp. 4146-4151. , http://www.pnas.org/cgi/doi/10.1073/pnas.1200448109, Available from
  • Muralidharan-Chari, V., Clancy, J., Plou, C., ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles (2009) Curr Biol, 19 (22), pp. 1875-1885. , http://linkinghub.elsevier.com/retrieve/pii/S0960982209017722, Available from
  • Burger, D., Montezano, A.C., Nishigaki, N., Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts (2011) Arterioscler Thromb Vasc Biol, 31 (8), pp. 1898-1907. , http://atvb.ahajournals.org/cgi/doi/10.1161/ATVBAHA.110.222703, Available from
  • Gao, C., Li, R., Liu, Y., Rho-kinase-dependent F-actin rearrangement is involved in the release of endothelial microparticles during IFN-α-induced endothelial cell apoptosis (2012) J Trauma Acute Care Surg, 73 (5), pp. 1152-1160. , http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01586154-201211000-00017, Available from
  • Yu, X., Xu, J., Liu, W., Bubbles induce endothelial microparticle formation via a calcium-dependent pathway involving flippase inactivation and rho kinase activation (2018) Cell Physiol Biochem, 46 (3), pp. 965-974. , https://www.karger.com/Article/FullText/488825, Available from
  • Di Vizio, D., Kim, J., Hager, M.H., Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease (2009) Cancer Res, 69 (13), pp. 5601-5609. , http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-08-3860, Available from
  • Schwechheimer, C., Kuehn, M.J., Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions (2015) Nat Rev Microbiol, 13 (10), pp. 605-619. , http://www.nature.com/articles/nrmicro3525, Available from
  • Colombo, M., Raposo, G., Théry, C., Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles (2014) Annu Rev Cell Dev Biol, 30 (1), pp. 255-289. , http://www.ncbi.nlm.nih.gov/pubmed/25288114, Available from
  • Romancino, D.P., Paterniti, G., Campos, Y., Identification and characterization of the nano-sized vesicles released by muscle cells (2013) FEBS Lett, 587 (9), pp. 1379-1384
  • Booth, A.M., Fang, Y., Fallon, J.K., Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane (2006) J Cell Biol, 172 (6), pp. 923-935. , http://www.ncbi.nlm.nih.gov/pubmed/16533950, Available from
  • Hoang, T.Q., Rampon, C., Freyssinet, J.-M., A method to assess the migration properties of cell-derived microparticles within a living tissue (2011) Biochim Biophys Acta, 1810 (9), pp. 863-866. , http://linkinghub.elsevier.com/retrieve/pii/S0304416511001061, Available from
  • Menck, K., Sönmezer, C., Worst, T.S., Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane (2017) J Extracell Vesicles, 6 (1), p. 1378056. , https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1378056, Available from
  • Bobrie, A., Colombo, M., Krumeich, S., Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation (2012) J Extracell Vesicles, 1, p. 18297
  • Peinado, H., Alečković, M., Lavotshkin, S., Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET (2012) Nat Med, 18 (6), pp. 883-891. , http://www.ncbi.nlm.nih.gov/pubmed/22635005, Available from
  • Kim, D.K., Kang, B., Kim, O.Y., EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles (2013) J Extracell Vesicles, 2. , http://www.ncbi.nlm.nih.gov/pubmed/24009897, Available from
  • Kim, D.-K., Lee, J., Kim, S.R., EVpedia: a community web portal for extracellular vesicles research (2015) Bioinformatics, 31 (6), pp. 933-939. , http://www.ncbi.nlm.nih.gov/pubmed/25388151, Available from
  • Kalra, H., Simpson, R.J., Ji, H., Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation (2012) PLoS Biol, 10 (12), p. e1001450
  • Mathivanan, S., Simpson, R.J., ExoCarta: A compendium of exosomal proteins and RNA (2009) Proteomics, 9 (21), pp. 4997-5000. , http://www.ncbi.nlm.nih.gov/pubmed/19810033, Available from
  • Subramanian, S.L., Kitchen, R.R., Alexander, R., Integration of extracellular RNA profiling data using metadata, biomedical ontologies and linked data technologies (2015) J Extracell Vesicles, 4, p. 27497. , http://www.ncbi.nlm.nih.gov/pubmed/26320941, Available from

Citas:

---------- APA ----------
(2018) . Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1).
http://dx.doi.org/10.1080/20013078.2018.1535750
---------- CHICAGO ----------
Théry, C. "Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines" . Journal of Extracellular Vesicles 7, no. 1 (2018).
http://dx.doi.org/10.1080/20013078.2018.1535750
---------- MLA ----------
Théry, C. "Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines" . Journal of Extracellular Vesicles, vol. 7, no. 1, 2018.
http://dx.doi.org/10.1080/20013078.2018.1535750
---------- VANCOUVER ----------
Théry, C. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7(1).
http://dx.doi.org/10.1080/20013078.2018.1535750