Artículo

Ruiz, J.A.; De Almeida, A.; Godoy, M.S.; Mezzina, M.P.; Bidart, G.N.; Méndez, B.S.; Pettinari, M.J.; Nikel, P.I. "Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals" (2012) Computational and Structural Biotechnology Journal. 3(4):e201210019
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to O2 availability and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly(3-hydroxybutyrate), under conditions with restricted O2 supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathway(s) at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level. © 2012 Bernstein and Carlson.

Registro:

Documento: Artículo
Título:Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals
Autor:Ruiz, J.A.; De Almeida, A.; Godoy, M.S.; Mezzina, M.P.; Bidart, G.N.; Méndez, B.S.; Pettinari, M.J.; Nikel, P.I.
Filiación:Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-CONICET), Universidad Nacional de San Martín, San-Martín, Buenos Aires, Argentina
Palabras clave:ArcBA; CreBC; Escherichia coli; Metabolic flux analysis; Polyhydroxyalkanoates; Redox homeostasis; Reduced biochemicals
Año:2012
Volumen:3
Número:4
Página de inicio:e201210019
DOI: http://dx.doi.org/10.5936/csbj.201210019
Título revista:Computational and Structural Biotechnology Journal
Título revista abreviado:Comput. Struct. Biotechnol. J.
ISSN:20010370
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20010370_v3_n4_pe201210019_Ruiz

Referencias:

  • Verlinden, R.A.J., Hill, D.J., Kenward, M.A., Williams, C.D., Radecka, I., Bacterial synthesis of biodegradable polyhydroxyalkanoates (2007) Journal of Applied Microbiology, 102 (6), pp. 1437-1449. , DOI 10.1111/j.1365-2672.2007.03335.x
  • Gomez, J.G.C., Mendez, B.S., Nikel, P.I., Pettinari, M.J., Prieto, M.A., Making green polymers even greener: Towards sustainable production of polyhydroxyalkanoates from agroindustrial by products (2012) Advances In Applied Biotechnology., pp. 41-62. , In: Petre M, Editor Rijeka, Croatia: InTech
  • Clomburg, J.M., Gonzalez, R., Biofuel production in escherichia coli: The role of metabolic engineering and synthetic biology (2010) Appl Microbiol Biotechnol, 86, pp. 419-434
  • Geddes, C.C., Nieves, I.U., Ingram, L.O., Advances in ethanol production (2011) Curr Opin Biotechnol, 22, pp. 312-319
  • Biebl, H., Menzel, K., Zeng, A.-P., Deckwer, W.-D., Microbial production of 1,3-propanediol (1999) Applied Microbiology and Biotechnology, 52 (3), pp. 289-297. , DOI 10.1007/s002530051523
  • Kaur, G., Srivastava, A.K., Chand, S., Advances in biotechnological production of 1,3-propanediol (2012) Biochem Eng J, 64, pp. 106-118
  • Thakker, C., Martinez, I., San, K.Y., Bennett, G.N., Succinate production in escherichia coli (2012) Biotechnol J, 7, pp. 213-224
  • Okano, K., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A., Biotechnological production of enantiomeric pure lactic acid from renewable resources: Recent achievements, perspectives, and limits (2010) Appl Microbiol Biotechnol, 85, pp. 413-423
  • Vickers, C.E., Klein-Marcuschamer, D., Kromer, J.O., Examining the feasibility of bulk commodity production in escherichia coli (2012) Biotechnol Lett, 34, pp. 585-596
  • Gottschalk, G., (1986) Bacterial metabolism., , Springer Verlag, New York
  • Guest, J.R., Angier, S.J., Russell, G.C., Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli (1989) Annals of the New York Academy of Sciences, 573, pp. 76-99. , DOI 10.1111/j.1749-6632.1989.tb14988.x
  • Mattevi, A., Obmolova, G., Schulze, E., Kalk, K.H., Westphal, A.H., Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex (1992) Science, 255, pp. 1544-1550
  • Patschkowski, T., Bates, D.N., Kiley, P.J., Mechanisms for sensing and responding to oxygen deprivation (2000) Bacterial stress responses., pp. 61-78. , In: Storz G, Hengge-Aronis R, editors. Washington, D.C.: ASM Press
  • Unden, G., Bongaerts, J., Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors (1997) Biochimica et Biophysica Acta - Bioenergetics, 1320 (3), pp. 217-234. , DOI 10.1016/S0005-2728(97)00034-0, PII S0005272897000340
  • Gunsalus, R.P., Control of electron flow in escherichia coli: Coordinated transcription of respiratory pathway genes (1992) J Bacteriol, 174, pp. 7069-7074
  • Cavicchioli, R., Chiang, R.C., Kalman, L.V., Gunsalus, R.P., Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation (1996) Molecular Microbiology, 21 (5), pp. 901-911
  • Iuchi, S., Weiner, L., Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments (1996) Journal of Biochemistry, 120 (6), pp. 1055-1063
  • Becker, S., Vlad, D., Schuster, S., Pfeiffer, P., Unden, G., Regulatory O2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration (1997) Archives of Microbiology, 168 (4), pp. 290-296. , DOI 10.1007/s002030050501
  • Clark, D.P., The fermentation pathways of escherichia coli (1989) FEMS Microbiol Rev, 5, pp. 223-234
  • Bock, A., Sawers, G., Fermentation (1996) Escherichia Coli and Salmonella: Cellular and Molecular Biology, 1, pp. 262-282. , In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB et al., editors. Washington, D.C.: ASM Press
  • De Graef, M.R., Alexeeva, S., Snoep, J.L., Teixeira De Mattos, M.J., The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli (1999) Journal of Bacteriology, 181 (8), pp. 2351-2357
  • Murarka, A., Clomburg, J.M., Moran, S., Shanks, J.V., Gonzalez, R., Metabolic analysis of wild-type escherichia coli and a pyruvate dehydrogenase complex (pdhc)-deficient derivative reveals the role of pdhc in the fermentative metabolism of glucose (2010) J Biol Chem, 285, pp. 31548-31558
  • Sawers, G., Bock, A., Anaerobic regulation of pyruvate formate-lyase from escherichia coli k-12 (1988) J Bacteriol, 170, pp. 5330-5336
  • Sawers, G., Wagner, A.F.V., Bock, A., Transcription initiation at multiple promoters of the pfl gene by e( j70-dependent transcription in vitro and heterologous expression in pseudomonas putida in vivo (1989) J Bacteriol, 171, pp. 4930-4937
  • Sawers, G., Suppmann, B., Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the arca and fnr proteins (1992) J Bacteriol, 174, pp. 3474-3478
  • Sawers, G., Specific transcriptional requirements for positive regulation of the anaerobically inducible pfl operon by ArcA and FNR (1993) Molecular Microbiology, 10 (4), pp. 737-747. , DOI 10.1111/j.1365-2958.1993.tb00944.x
  • Sirko, A., Zehelein, E., Freundlich, M., Sawers, G., Integration host factor is required for anaerobic pyruvate induction of pfl operon expression in Escherichia coli (1993) Journal of Bacteriology, 175 (18), pp. 5769-5777
  • Kaiser, M., Sawers, G., Nitrate repression of the escherichia coli pfl operon is mediated by the dual sensors narq and narx and the dual regulators narl and narp (1995) J Bacteriol, 177, pp. 3647-3655
  • Wagner, A.F.V., Frey, M., Neugebauer, F.A., Schafer, W., Knappe, J., The free radical in pyruvate formate-lyase is located on glycine-734 (1992) Proc Nad Acad Sci USA, 89, pp. 996-1000
  • Alexeeva, S., De Kort, B., Sawers, G., Hellingwerf, K.J., De Mattos, M.J.T., Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli (2000) Journal of Bacteriology, 182 (17), pp. 4934-4940. , DOI 10.1128/JB.182.17.4934-4940.2000
  • Shalel-Levanon, S., San, K.-Y., Bennett, G.N., Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions (2005) Biotechnology and Bioengineering, 92 (2), pp. 147-159. , DOI 10.1002/bit.20583
  • Birkmann, A., Zinoni, F., Sawers, G., Bock, A., Factors affecting transcriptional regulation of the formate-hydrogen- lyase pathway of Escherichia coli (1987) Archives of Microbiology, 148 (1), pp. 44-51. , DOI 10.1007/BF00429646
  • Rossmann, R., Sawers, G., Bock, A., Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: Definition of the formate regulon (1991) Molecular Microbiology, 5 (11), pp. 2807-2814
  • Suppmann, B., Sawers, G., Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: Identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter (1994) Molecular Microbiology, 11 (5), pp. 965-982. , DOI 10.1111/j.1365-2958.1994.tb00375.x
  • Dittrich, C.R., Bennett, G.N., San, K.-Y., Characterization of the acetate-producing pathways in Escherichia coli (2005) Biotechnology Progress, 21 (4), pp. 1062-1067. , DOI 10.1021/bp050073s
  • Garvie, E.L., Bacterial lactate dehydrogenases (1980) Microbiol Rev, 44, pp. 106-139
  • Ashworth, J.M., Kornberg, H.L., The anaplerotic fixation of carbon dioxide by escherichia coli (1966) Proc R Soc Lond B Biol Sci, 165, pp. 179-188
  • Cronan, J.E., LaPorte, D., Tricarboxylic acid cycle and glyoxylate bypass (1996) Escherichia Coli and Salmonella: Cellular and Molecular Biology, 1, pp. 206-216. , In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB et al., editors. Washington, D.C.: ASM Press
  • Dellomonaco, C., Rivera, C., Campbell, P., Gonzalez, R., Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks (2010) Appl Environ Microbiol, 76, pp. 5067-5078
  • Kim, J.H., Block, D.E., Mills, D.A., Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass (2010) Appl Microbiol Biotechnol, 88, pp. 1077-1085
  • Dellomonaco, C., Clomburg, J.M., Miller, E.N., Gonzalez, R., Engineered reversal of the p-oxidation cycle for the synthesis of fuels and chemicals (2011) Nature, 476, pp. 355-359
  • Jang, Y.S., Kim, B., Shin, J.H., Choi, Y.J., Choi, S., Bio-based production of c2-c6 platform chemicals (2012) Biotechnol Bioeng, 109, pp. 2437-2459
  • Lee, J.W., Na, D., Park, J.M., Lee, J., Choi, S., Systems metabolic engineering of microorganisms for natural and non-natural chemicals (2012) Nat Chem Biol, 8, pp. 536-546
  • Keseler, I.M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Ecocyc: A comprehensive database of escherichia coli biology (2011) Nucleic Acids Res, 39, pp. D583-D590
  • Martinez-Antonio, A., Collado-Vides, J., Identifying global regulators in transcriptional regulatory networks in bacteria (2003) Current Opinion in Microbiology, 6 (5), pp. 482-489. , DOI 10.1016/j.mib.2003.09.002
  • Unden, G., Becker, S., Bongaerts, J., Holighaus, G., Schirawski, J., Ch-sensing and ch-dependent gene regulation in facultatively anaerobic bacteria (1995) Arch Microbiol, 164, pp. 81-90
  • Green, J., Paget, M.S., Bacterial redox sensors (2004) Nature Reviews Microbiology, 2 (12), pp. 954-966. , DOI 10.1038/nrmicro1022
  • Kiley, P.J., Beinert, H., Oxygen sensing by the global regulator, FNR: The role of the iron-sulfur cluster (1998) FEMS Microbiology Reviews, 22 (5), pp. 341-352. , DOI 10.1016/S0168-6445(98)00022-9, PII S0168644598000229
  • Unden, G., Achebach, S., Holighaus, G., Tran, H.-Q., Wackwitz, B., Zeuner, Y., Control of FNR function of Escherichia coli by O2 and reducing conditions (2002) Journal of Molecular Microbiology and Biotechnology, 4 (3), pp. 263-268
  • Iuchi, S., Lin, E.C.C., ArcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways (1988) Proceedings of the National Academy of Sciences of the United States of America, 85 (6), pp. 1888-1892. , DOI 10.1073/pnas.85.6.1888
  • Lynch, A.S., Lin, E.C.C., Responses to molecular oxygen (1996) Escherichia Coli and Salmonella: Cellular and Molecular Biology, 1, pp. 1526-1538. , In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB et al., editors. Washington, D.C.: ASM Press
  • Alexeeva, S., Hellingwerf, K.J., Teixeira De Mattos, M.J., Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions (2003) Journal of Bacteriology, 185 (1), pp. 204-209. , DOI 10.1128/JB.185.1.204-209.2003
  • Levanon, S.S., San, K.-Y., Bennett, G.N., Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses (2005) Biotechnology and Bioengineering, 89 (5), pp. 556-564. , DOI 10.1002/bit.20381
  • Salmon, K.A., Hung, S.-P., Steffen, N.R., Krupp, R., Baldi, P., Hatfield, G.W., Gunsalus, R.P., Global gene expression profiling in Escherichia coli K12: Effects of oxygen availability and ArcA (2005) Journal of Biological Chemistry, 280 (15), pp. 15084-15096. , DOI 10.1074/jbc.M414030200
  • Avison, M.B., Horton, R.E., Walsh, T.R., Bennett, P.M., Escherichia coli crebc is a global regulator of gene expression that responds to growth in minimal media (2001) J Biol Chem, 276, pp. 26955-26961
  • Wiechert, W., 13c metabolic flux analysis (2001) Metab Eng, 3, pp. 195-206
  • Sauer, U., High-throughput phenomics: Experimental methods for mapping fluxomes (2004) Current Opinion in Biotechnology, 15 (1), pp. 58-63. , DOI 10.1016/j.copbio.2003.11.001
  • Shimizu, K., Metabolic flux analysis based on 13c-labeling experiments and integration of the information with gene and protein expression patterns (2004) Adv Biochem Eng Biotechnol, 91, pp. 1-49
  • Zamboni, N., Sauer, U., Novel biological insights through metabolomics and 13c-flux analysis (2009) Curr Opin Microbiol, 12, pp. 553-558
  • Perrenoud, A., Sauer, U., Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli (2005) Journal of Bacteriology, 187 (9), pp. 3171-3179. , DOI 10.1128/JB.187.9.3171-3179.2005
  • Zhu, J., Shalel-Levanon, S., Bennett, G., San Ka-Yiu, Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments (2006) Metabolic Engineering, 8 (6), pp. 619-627. , DOI 10.1016/j.ymben.2006.07.002, PII S1096717606000644
  • Nikel, P.I., Zhu, J., San, K.Y., Mendez, B.S., Bennett, G.N., Metabolic flux analysis of escherichia coli creb and arca mutants reveals shared control of carbon catabolism under microaerobic growth conditions (2009) J Bacteriol, 191, pp. 5538-5548
  • Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R., Functional characterization in vitro of all two-component signal transduction systems from escherichia coli (2005) J Biol Chem, 280, pp. 1448-1456
  • Groban, E.S., Clarke, E.J., Salis, H.M., Miller, S.M., Voigt, C.A., Kinetic buffering of cross talk between bacterial two-component sensors (2009) J Mol Biol, 390, pp. 380-393
  • Rolfe, M.D., Ter Beek, A., Graham, A.I., Trotter, E.W., Shahzad Asif, H.M., Transcript profiling and inference of escherichia coli k-12 arca activity across the range of physiologically relevant oxygen concentrations (2011) J Biol Chem, 286, pp. 10147-10154
  • Anderson, A.J., Dawes, E.A., Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates (1990) Microbiological Reviews, 54 (4), pp. 450-472
  • Steinbiichel, A., Valentin, H.E., Diversity of bacterial polyhydroxyalkanoic acids (1995) FEMS Microbiol Lett, 128, pp. 219-228
  • Keshavarz, T., Roy, I., Polyhydroxyalkanoates: Bioplastics with a green agenda (2010) Curr Opin Microbiol, 13, pp. 321-326
  • Harding, K.G., Dennis, J.S., Von Blottnitz, H., Harrison, S.T.L., Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis (2007) Journal of Biotechnology, 130 (1), pp. 57-66. , DOI 10.1016/j.jbiotec.2007.02.012, PII S0168165607001514
  • Pettinari, M.J., Vazquez, G.J., Silberschmidt, D., Rehm, B., Steibuchel, A., Mendez, B.S., Poly(3-Hydroxybutyrate) Synthesis Genes in Azotobacter sp. Strain FA8 (2001) Applied and Environmental Microbiology, 67 (3-12), pp. 5331-5334
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Mendez, B.S., Poly(3-hydroxybutyrate) synthesis by recombinant escherichia coli arca mutants in microaerobiosis (2006) Appl Environ Microbiol, 72, pp. 2614-2620
  • Nikel, P.I., Pettinari, M.J., Ramirez, M.C., Galvagno, M.A., Mendez, B.S., Escherichia coli arcA mutants: Metabolic profile characterization of microaerobic cultures using glycerol as a carbon source (2008) Journal of Molecular Microbiology and Biotechnology, 15 (1), pp. 48-54. , DOI 10.1159/000111992
  • Nikel, P.I., De Almeida, A., Giordano, A.M., Pettinari, M.J., Redox driven metabolic tuning: Carbon source and aeration affect synthesis of poly(3-hydroxybutyrate) in escherichia coli (2010) Bioeng Bugs, 1, pp. 291-295
  • Dobson, R., Gray, V., Rumbold, K., Microbial utilization of crude glycerol for the production of value-added products (2012) J Ind Microbiol Biotechnol, 39, pp. 217-226
  • Pettinari, M.J., Mezzina, M.P., Mendez, B.S., Godoy, M.S., Nikel, P.I., Glycerol as a substrate for bioprocesses in different o2 availability conditions (2012) Glycerol: Production, Structure and Applications., pp. 139-156. , In: De Santos Silva M, Costa Ferreira P, editors Hauppauge, N.Y.: Nova Science Publishers
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Mendez, B.S., Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant escherichia coli arca mutant in fed-batch microaerobic cultures (2008) Appl Microbiol Biotechnol, 77, pp. 1337-1343
  • Nikel, P.I., Ramirez, M.C., Pettinari, M.J., Mendez, B.S., Galvagno, M.A., Ethanol synthesis from glycerol by escherichia coli redox mutants expressing adhe from leuconostoc mesenteroides (2010) J Appl Microbiol, 109, pp. 492-504
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Mendez, B.S., Metabolic selective pressure stabilizes plasmids carrying biosynthetic genes for reduced biochemicals in escherichia coli redox mutants (2010) Appl Microbiol Biotechnol, 88, pp. 563-573
  • Theodorou, E.C., Theodorou, M.C., Kyriakidis, D.A., Involvement of the atoscdaeb regulon in the high molecular weight poly-(i?)-3-hydroxybutyrate biosynthesis in phacab escherichia coli (2012) Metab Eng, 14, pp. 354-365
  • Pettinari, M.J., Vazquez, G.J., Kruger, N., Vary, P.S., Steinbuchel, A., Mendez, B.S., Trans activation of the Escherichia coli ato structural genes by a regulatory protein from Bacillus megaterium: Potential use in polyhydroxyalkanoate production (1998) Applied Microbiology and Biotechnology, 49 (6), pp. 737-742. , DOI 10.1007/s002530051240
  • Wei, X.X., Shi, Z.Y., Yuan, M.Q., Chen, G.Q., Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (phb) in recombinant escherichia coli (2009) Appl Microbiol Biotechnol, 82, pp. 703-712
  • Wang, R.Y., Shi, Z.Y., Chen, J.C., Wu, Q., Chen, G.Q., Enhanced co-production of hydrogen and poly-(i?)-3-hydroxybutyrate by recombinant phb producing e. Coli over-expressing hydrogenase 3 and acetyl-coa synthetase (2012) Metab Eng, 14, pp. 496-503
  • Zeng, A.P., Biebl, H., Bulk chemicals from biotechnology: The case of 1,3-propanediol production and the new trends (2002) Adv Biochem Eng Biotechnol, 74, pp. 239-259
  • Maervoet, V.E.T., De Mey, M., Beauprez, J., De Maeseneire, S., Soetaert, W.K., Enhancing the microbial conversion of glycerol to 1,3-propanediol using metabolic engineering (2011) Org Process Res Dev, 15, pp. 189-202
  • Freund, A., Uber die bildung und darstellung von trimethylenalkohol aus glycerin (1881) Monatsheft Fur Chimie, 2, pp. 636-641
  • Nakamura, C.E., Whited, G.M., Metabolic engineering for the microbial production of 1,3-propanediol (2003) Current Opinion in Biotechnology, 14 (5), pp. 454-459. , DOI 10.1016/j.copbio.2003.08.005
  • Saxena, R.K., Anand, P., Saran, S., Isar, J., Microbial production of 1,3-propanediol: Recent developments and emerging opportunities (2009) Biotechnol Adv, 27, pp. 895-913
  • Altaras, N.E., Metabolic engineering of a 1,2-propanediol pathway in escherichia coli (1999) Appl Environ Microbiol, 65, pp. 1180-1185
  • Zhang, Y., Huang, Z., Du, C., Li, Y., Cao, Z., Introduction of an nadh regeneration system into klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol (2009) Metab Eng, 11, pp. 101-106
  • Tang, X., Tan, Y., Zhu, H., Zhao, K., Shen, W., Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of escherichia coli (2009) Appl Environ Microbiol, 75, pp. 1628-1634
  • Pettinari, M.J., Nikel, P.I., Ruiz, J.A., Mendez, B.S., ArcA redox mutants as a source of reduced bioproducts (2008) Journal of Molecular Microbiology and Biotechnology, 15 (1), pp. 41-47. , DOI 10.1159/000111991
  • Cervin, M.A., Soucaille, P., Valle, F., (2010) Process for the Biological Production of 1,3-Propanediol with High Yield., , USA Patent US7745184
  • Jana, S., Deb, J.K., Strategies for efficient production of heterologous proteins in Escherichia coli (2005) Applied Microbiology and Biotechnology, 67 (3), pp. 289-298. , DOI 10.1007/s00253-004-1814-0
  • Waegeman, H., Soetaert, W., Increasing recombinant protein production in escherichia coli through metabolic and genetic engineering (2011) J Ind Microbiol Biotechnol, 38, pp. 1891-1910
  • Sevastsyanovich, Y.R., Alfasi, S.N., Cole, J.A., Sense and nonsense from a systems biology approach to microbial recombinant protein production (2010) Biotechnol Appl Biochem, 55, pp. 9-28
  • Goncalves, G.A.L., Bower, D.M., Prazeres, D.M.F., Monteiro, G.A., Prather, K.L.J., Rational engineering of escherichia coli strains for plasmid biopharmaceutical manufacturing (2012) Biotechnol J, 7, pp. 251-261
  • Luli, G.W., Strohl, W.R., Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations (1990) Applied and Environmental Microbiology, 56 (4), pp. 1004-1011
  • El-Mansi, M., Flux to acetate and lactate excretions in industrial fermentations: Physiological and biochemical implications (2004) Journal of Industrial Microbiology and Biotechnology, 31 (7), pp. 295-300. , DOI 10.1007/s10295-004-0149-2
  • Andersen, K.B., Von Meyenburg, K., Are growth rates of Escherichia coli in batch cultures limited by respiration? (1980) Journal of Bacteriology, 144 (1), pp. 114-123
  • De Mey, M., De Maeseneire, S., Soetaert, W., Vandamme, E., Minimizing acetate formation in E. Coli fermentations (2007) Journal of Industrial Microbiology and Biotechnology, 34 (11), pp. 689-700. , DOI 10.1007/s10295-007-0244-2
  • Vemuri, G.N., Eiteman, M.A., Altman, E., Increased recombinant protein production in escherichia coli strains with overexpressed water-forming nadh oxidase and a deleted arca regulatory protein (2006) Biotechnol Bioeng, 94, pp. 538-542
  • Vemuri, G.N., Altman, E., Sangurdekar, D.P., Khodursky, A.B., Eiteman, M.A., Overflow metabolism in Escherichia coli during steady-state growth: Transcriptional regulation and effect of the redox ratio (2006) Applied and Environmental Microbiology, 72 (5), pp. 3653-3661. , DOI 10.1128/AEM.72.5.3653-3661.2006
  • Waegeman, H., Beauprez, J., Moens, H., Maertens, J., De Mey, M., Effect of iclr and arca knockouts on biomass formation and metabolic fluxes in escherichia coli k12 and its implications on understanding the metabolism of escherichia coli bl21 (de3) (2011) BMC Microbiol, 11, p. 70
  • Waegeman, H., Maertens, J., Beauprez, J., De Mey, M., Soetaert, W., Effect of iclr and arca deletions on physiology and metabolic fluxes in escherichia coli bl21 (de3) (2011) Biotechnol Lett, 34, pp. 329-337
  • Bidart, G.N., Ruiz, J.A., De Almeida, A., Mendez, B.S., Nikel, P.I., Manipulation of the anoxic metabolism in escherichia coli by arcb deletion variants in the arcba two-component system (2012) Appl Environ Microbiol, 78, pp. 8784-8794
  • Zhou, S., Iverson, A.G., Grayburn, W.S., Doubling the catabolic reducing power (nadh) output of escherichia coli fermentation for production of reduced products (2010) Biotechnol Prog, 26, pp. 45-51
  • Martinez, I., Zhu, J., Lin, H., Bennett, G.N., San, K.Y., Replacing escherichia coli nad-dependent glyceraldehyde 3-phosphate dehydrogenase (gapdh) with a nadp-dependent enzyme from clostridium acetobutylicum facilitates nadph dependent pathways (2008) Metab Eng, 10, pp. 352-359
  • Zhu, J., Sanchez, A., Bennett, G.N., San, K.Y., Manipulating respiratory levels in escherichia coli for aerobic formation of reduced chemical products (2011) Metab Eng, 13, pp. 704-712
  • Herrgard, M., Panagiotou, G., Analyzing the genomic variation of microbial cell factories in the era of new biotechnology (2012) Comput Struct Biotechnol J, 3, pp. e201210012
  • Jouhten, P.T., Metabolic modelling in the development of cell factories by synthetic biology (2012) Comput Struct Biotechnol J, 3, pp. e201210009

Citas:

---------- APA ----------
Ruiz, J.A., De Almeida, A., Godoy, M.S., Mezzina, M.P., Bidart, G.N., Méndez, B.S., Pettinari, M.J.,..., Nikel, P.I. (2012) . Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals. Computational and Structural Biotechnology Journal, 3(4), e201210019.
http://dx.doi.org/10.5936/csbj.201210019
---------- CHICAGO ----------
Ruiz, J.A., De Almeida, A., Godoy, M.S., Mezzina, M.P., Bidart, G.N., Méndez, B.S., et al. "Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals" . Computational and Structural Biotechnology Journal 3, no. 4 (2012) : e201210019.
http://dx.doi.org/10.5936/csbj.201210019
---------- MLA ----------
Ruiz, J.A., De Almeida, A., Godoy, M.S., Mezzina, M.P., Bidart, G.N., Méndez, B.S., et al. "Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals" . Computational and Structural Biotechnology Journal, vol. 3, no. 4, 2012, pp. e201210019.
http://dx.doi.org/10.5936/csbj.201210019
---------- VANCOUVER ----------
Ruiz, J.A., De Almeida, A., Godoy, M.S., Mezzina, M.P., Bidart, G.N., Méndez, B.S., et al. Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals. Comput. Struct. Biotechnol. J. 2012;3(4):e201210019.
http://dx.doi.org/10.5936/csbj.201210019