Artículo

Morelli, L.G.; Ares, S.; Herrgen, L.; Schröter, C.; Jülicher, F.; Oates, A.C. "Delayed coupling theory of vertebrate segmentation" (2009) HFSP Journal. 3(1):55-66
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation. © HFSP Publishing.

Registro:

Documento: Artículo
Título:Delayed coupling theory of vertebrate segmentation
Autor:Morelli, L.G.; Ares, S.; Herrgen, L.; Schröter, C.; Jülicher, F.; Oates, A.C.
Filiación:Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
Departamento de Física, FCEyN, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Vertebrata
Año:2009
Volumen:3
Número:1
Página de inicio:55
Página de fin:66
DOI: http://dx.doi.org/10.2976/1.3027088
Título revista:HFSP Journal
Título revista abreviado:HFSP J.
ISSN:19552068
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19552068_v3_n1_p55_Morelli

Referencias:

  • Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., Herrmann, B.G., Wnt3a plays a major role in the segmentation clock controlling somitogenesis (2003) Dev. Cell., 4, pp. 395-406
  • Aulehla, A., Wiegraebe, W., Baubet, V., Wahl, M.B., Deng, C., Taketo, M., Lewandoski, M., Pourquié, O., A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation (2008) Nat. Cell Biol., 10, pp. 186-193
  • Bernard, S., Čajavec, B., Pujo-Menjouet, L., Mackey, M.C., Herzel, H., Modelling transcriptional feedback loops: The role of Gro/ TLE1 in Hes1 oscillations (2006) Philos. Trans. R. Soc. London, Ser. A., 364, pp. 1155-1170
  • Beta, C., Mikhailov, A.S., Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization (2004) Physica D, 199, pp. 173-184
  • Bulman, M.P., Kusumi, K., Frayling, T.M., McKeown, C., Garrett, C., Lander, E.S., Krumlauf, R., Turnpenny, P.D., Mutations in the human Delta homologue DLL3, cause axial skeletal defects in spondylocostal dysostosis (2000) Nat. Genet., 24, pp. 438-441
  • Casagrande, V., Togashi, Y., Mikhailov, A.S., Molecular synchronization waves in arrays of allosterically regulated enzymes (2007) Phys. Rev. Lett., 99, p. 048301
  • Chipman, A.D., Akam, M., The segmentation cascade in the centipede Strigamia maritima: Involvement of the Notch pathway and pair-rule gene homologues (2008) Dev. Biol., 319, pp. 160-169
  • Cinquin, O., Is the somitogenesis clock really cell-autonomous? A coupled-oscillator model of segmentation (2003) J. Theor. Biol., 224, pp. 459-468
  • Cinquin, O., Repressor dimerization in the zebrafish somitogenesis clock (2007) PLOS Comput. Biol., 3, pp. e32
  • Cooke, J., Zeeman, E.C., A clock and wavefront model for control of the number of repeated structures during animal morphogenesis (1976) J. Theor. Biol., 58, pp. 455-476
  • Cross, M.C., Hohenberg, P.C., Pattern formation outside of equilibrium (1993) Rev. Mod. Phys., 65, pp. 851-1112
  • Damens, W.G.M., Evolutionary conservation and divergence of the segmentation process in arthropods (2007) Dev. Dyn., 236, pp. 1379-1391
  • Dubrulle, J., Pourquié, O., Fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo (2004) Nature (London), 427, pp. 419-422
  • Dubrulle, J., McGrew, M.J., Pourquié, O., Fgf signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation (2001) Cell, 106, pp. 219-232
  • Earl, M.G., Strogatz, S.H., Synchronization in oscillator networks with delayed coupling: A stability criterion (2003) Phys. Rev. E., 67, p. 036204
  • Elmasri, H., Liedtke, D., Lücking, G., Volff, J.N., Gessler, M., Winkler, C., Her7 and hey1, but not lunatic fringe show dynamic expression during somitogenesis in medaka (Oryzias latipes) (2004) Gene Expr. Patterns., 4, pp. 553-559
  • This Document Can Be Reached Through a Direct Link in the Online Article's HTML Reference Section Or Via the EPAPS Homepage, , http://www.aip.org/pubservs/epaps.html, See EPAPS Document No. E-HJFOA5-3-004901 for supplemental material
  • Feng, P., Navaratna, M., Modeling periodic oscillations during somitogenesis (2007) Math. Biosci. Eng., 4, pp. 661-673
  • Franz, A.L., Roy, R., Shaw, L.B., Schwartz, I.B., Effect of multiple time delays on intensity fluctuation dynamics in fiber ring lasers (2008) Phys. Rev. E, 78, p. 016208
  • Gajewski, M., Elmasri, H., Girschick, M., Sieger, D., Winkler, C., Comparative analysis of her genes during fish somitogenesis suggests a mouse/chick-like mode of oscillation in medaka (2006) Dev. Genes Evol., 216, pp. 315-332
  • Giudicelli, F., Özbudak, E.M., Wright, G.J., Lewis, J., Setting the tempo in development: An investigation of the zebrafish somite clock mechanism (2007) PLoS Biol, 5, pp. 1309-1323
  • Goldbeter, A., Gonze, D., Pourquié, O., Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling (2007) Dev. Dyn., 236, pp. 1495-1508
  • Goldbeter, A., Pourquié, O., Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways (2008) J. Theor. Biol., 252, pp. 574-585
  • Gomez, C., Özbudak, E.M., Wunderlich, J., Baumann, D., Lewis, J., Pourquié, O., Control of segment number in vertebrate embryos (2008) Nature (London), 454, pp. 335-339
  • Hassard, B., Wan, Y.H., Bifurcation formulae derived from center manifold theory (1978) J. Math. Anal. Appl., 63, pp. 297-312
  • Heuss, S.F., Ndiaye-Lobry, D., Six, E.M., Israël, A., Logeat, F., The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 11212-11217
  • Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R., Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop (2002) Science, 298, pp. 840-843
  • Holley, S.A., The genetics and embryology of zebrafish metamerism (2007) Dev. Dyn., 236, pp. 1422-1449
  • Holley, S.A., Geisler, R., Nüsslein-Volhard, C., Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity (2000) Genes Dev, 14, pp. 1678-1690
  • Holley, S.A., Jülich, D., Rauch, G.J., Geisler, R., Nüsslein-Volhard, C., Her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis (2002) Development, 129, pp. 1175-1183
  • Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H., Noise-resistant and synchronized oscillation of the segmentation clock (2006) Nature (London), 441, pp. 719-723
  • Itoh, M., Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta (2003) Dev. Cell., 4, pp. 67-82
  • Jaeger, J., Goodwin, B.C., A cellular oscillator model for periodic pattern formation (2001) J. Theor. Biol., 213, pp. 171-181
  • Jensen, M.H., Sneppen, K., Tiana, G., Sustained oscillations and time delays in gene expression of protein Hes1 (2003) FEBS Lett, 541, pp. 176-177
  • Jiang, Y.-J., Aerne, B.L., Smithers, L., Haddon, C., Ish-Horowicz, D., Lewis, J., Notch signaling and the synchronization of the somite segmentation clock (2000) Nature (London), 408, pp. 475-479
  • Jülich, D., Beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation (2005) Dev. Biol., 286, pp. 391-404
  • Kaern, M., Menziger, M., Hunding, A., Segmentation and somitogenesis derived from phase dynamics in growing oscillatory media (2000) J. Theor. Biol., 207, pp. 473-493
  • Kim, M., Bertram, M., Pollman, M., von Oertzen, A., Mikhailov, A.S., Rotermund, H.H., Ertl, G., Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110) (2001) Science, 292, pp. 1357-1360
  • Kuramoto, Y., (1984) Chemical Oscillations,Waves, and Turbulence, , Springer, Berlin
  • Leier, A., Marquez-Lago, T.T., Burrage, K., Burrage, P., Modeling intrinsic noise and delays in chemical kinetics of coupled autoregulated oscillating cells (2008) Int. J. Multiscale Comp. Eng., 6, pp. 77-86
  • Lewis, J., Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator (2003) Curr. Biol., 13, pp. 1398-1408
  • Macdonald, N., (1989) Biological Delay Systems, , Cambridge University Press, Cambridge
  • Manrubia, S.C., Mikhailov, A.S., Zanette, D.H., (2004) Emergence of Dynamical Order, , 1st ed.,World Scientific, Singapore
  • Mara, A., Schroeder, J., Chalouni, C., Holley, S.A., Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC (2007) Nat. Cell Biol., 9, pp. 523-530
  • Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Okamura, H., Kageyama, R., Realtime imaging of the segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 1313-1318
  • Mazzitello, K.I., Arizmendi, C.M., Hentschel, H.G.E., Converting genetic network oscillations into somite spatial patterns (2008) Phys. Rev. E., 78, p. 021906
  • Momiji, H., Monk, N.A.M., Dissecting the dynamics of the Hes1 genetic oscillator (2008) J. Theor. Biol., 254, pp. 784-798
  • Monk, N.A.M., Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays (2003) Curr. Biol., 13, pp. 1409-1413
  • Niebur, E., Schuster, H.G., Kammen, D.M., Collective frequencies and metastability in networks of limit-cycle oscillators with time delay (1991) Phys. Rev. Lett., 67, pp. 2753-2756
  • Nishii, J., Uno, Y., Suzuki, R., Mathematical models for the swimming pattern of a lamprey. I. Analysis of collective oscillators with time-delayed interaction and multiple coupling (1994) Biol. Cybern., 72, pp. 1-9
  • Oates, A.C., Ho, R.K., Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish (2002) Development, 129, pp. 2929-2946
  • Oates, A.C., Mueller, C., Ho, R.K., Cooperative function of deltaC and her7 in anterior segment formation (2005) Dev. Biol., 280, pp. 133-149
  • Özbudak, E.M., Lewis, J., Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries (2008) PLoS Genet, 4 (2), pp. e15
  • Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourquié, O., Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis (1997) Cell, 91, pp. 639-648
  • Pascoal, S., Carvalho, C.R., Rodriguez-León, J., Delfini, M.-C., Duprez, D., Thorsteinsdóttir, S., Palmeirim, I., A molecular clock operates during chick autopod proximal-distal outgrowth (2007) J. Mol. Biol., 368, pp. 303-309
  • Riedel-Kruse, I.H., Müller, C., Oates, A.C., Synchrony dynamics during initiation, failure and rescue of the segmentation clock (2007) Science, 317, pp. 1911-1915
  • Rodríguez-González, J.G., Santillán, M., Fowler, A.C., Mackey, M.C., The segmentation clock in mice: Interaction between the Wnt and Notch signalling pathways (2007) J. Theor. Biol., 248, pp. 37-47
  • Santillán, M., Mackey, M.C., A proposed mechanism for the interaction of the segmentation clock and the determination front in somitogenesis (2008) PLoS ONE, 3, pp. e1561
  • Sawada, A., Shinya, M., Jiang, Y.-J., Kawakami, A., Kuroiwa, A., Takeda, H., Fgf/MAPK signalling is a crucial positional cue in somite boundary formation (2001) Development, 128, pp. 4873-4880
  • Schröter, C., Herrgen, L., Cardona, A., Brouhard, G.J., Feldman, B., Oates, A.C., Dynamics of zebrafish somitogenesis (2008) Dev. Dyn., 237, pp. 545-553
  • Schuster, H.G., Wagner, P., Mutual entrainment of two limit cycle oscillators with time delayed coupling (1989) Prog. Theor. Phys., 81, pp. 939-945
  • Tam, P.P., The control of somitogenesis in mouse embryos (1981) J. Embryol. Exp. Morphol., 65, pp. 103-128
  • Tiana, G., Krishna, S., Pigolotti, S., Jensen, M.H., Sneppen, K., Oscillations and temporal signalling in cells (2007) Phys. Biol., 4, pp. 1-17
  • Tiedemann, H.B., Schneltzer, E., Zeiser, S., Rubio-Aliaga, I., Wurst, W., Beckers, J., Przemeck, G.K.H., Hrabé de Angelis, M., Cell-based simulation of dynamic expression patterns in the presomitic mesoderm (2007) J. Theor. Biol., 248, pp. 120-129
  • Verdugo, A., Rand, R., Hopf bifurcation in a DDE model of gene expression (2008) Commun. Nonlinear Sci. Numer. Simul., 13, pp. 235-242
  • Wahl, M.B., Deng, C., Lewandoski, M., Pourquié, O., FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis (2007) Development, 134, pp. 4033-4041
  • Wolpert, L., Smith, J., Jessell, T., Lawrence, P., Robertson, E., Meyerowitz, E., (2006) Principles of Development, , 3rd ed., Oxford University Press, Oxford
  • Wünsche, H.-J., Synchronization of delay-coupled oscillators: A study of semiconductor lasers (2005) Phys. Rev. Lett., 94, p. 163901
  • Yeung, M.K.S., Strogatz, S.H., Time delay in the Kuramoto model of coupled oscillators (1999) Phys. Rev. Lett., 82, pp. 648-651
  • Zhang, L., Kendrick, C., Jülich, D., Holley, S.A., Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function (2008) Development, 135, pp. 2065-2070

Citas:

---------- APA ----------
Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F. & Oates, A.C. (2009) . Delayed coupling theory of vertebrate segmentation. HFSP Journal, 3(1), 55-66.
http://dx.doi.org/10.2976/1.3027088
---------- CHICAGO ----------
Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., Oates, A.C. "Delayed coupling theory of vertebrate segmentation" . HFSP Journal 3, no. 1 (2009) : 55-66.
http://dx.doi.org/10.2976/1.3027088
---------- MLA ----------
Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., Oates, A.C. "Delayed coupling theory of vertebrate segmentation" . HFSP Journal, vol. 3, no. 1, 2009, pp. 55-66.
http://dx.doi.org/10.2976/1.3027088
---------- VANCOUVER ----------
Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., Oates, A.C. Delayed coupling theory of vertebrate segmentation. HFSP J. 2009;3(1):55-66.
http://dx.doi.org/10.2976/1.3027088