Artículo

Fletcher, S.J.; Hapon, M.B.; Callegari, E.A.; Crosbie, M.L.; Santiso, N.; Ursino, A.; Amato, A.R.; Gutiérrez, A.; Sacca, P.A.; Dreszman, R.; Pérez, A.; Carón, R.W.; Calvo, J.C.; Pistone-Creydt, V. "Comparative proteomics of soluble factors secreted by human breast adipose tissue from tumor and normal breast" (2018) Oncotarget. 9(57):31007-31017
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tumor progression depends on the tumor-stroma interaction. In the breast, adipose tissue is the predominant stromal type. We have previously demonstrated that conditioned media (CMs) from explants of human adipose tissue of tumor breasts (hATT) increase proliferation and migration of breast cancer epithelial cells when compared to human adipose tissue from normal breasts (hATN). In this work, we aim to identify specific proteins and molecular/biological pathways associated with the secretion profile of hATT and hATN explants. hATT-CMs and hATN-CMs were separated by SDS-PAGE and analyzed by means of two-dimensional nano-liquid chromatography-mass spectrometry. The data was analyzed using ProteoIQ and FunRich software. In addition, 42 cytokines from hATTCMs and hATN-CMs were assayed by a protein antibody assay. Compared to hATNCMs, hATT-CMs showed greater protein diversity. We found that hATT-CMs presented a greater amount of proteins related to complement system activity, metabolism and immune system, as well as proteins involved in a variety of biological processes such as signal transduction and cell communication. Specifically, apolipoprotein AI and AII, complement component 3, and vimentin and desmin were significantly increased in hATT-CMs versus hATN-CMs. Moreover, a multivariate discriminant analysis of the cytokines detected by the array showed that IL-6, MCP-2 and GRO cytokines were sufficient and necessary to differentiate hATT-CMs from hATN-CMs. This analysis also showed that the levels of these three cytokines, taken together, correlated with stage and histological grade of the tumor in the hATT-CMs group, and with body mass index in the hATN-CMs group. © Fletcher et al.

Registro:

Documento: Artículo
Título:Comparative proteomics of soluble factors secreted by human breast adipose tissue from tumor and normal breast
Autor:Fletcher, S.J.; Hapon, M.B.; Callegari, E.A.; Crosbie, M.L.; Santiso, N.; Ursino, A.; Amato, A.R.; Gutiérrez, A.; Sacca, P.A.; Dreszman, R.; Pérez, A.; Carón, R.W.; Calvo, J.C.; Pistone-Creydt, V.
Filiación:Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
Laboratorio de Hormonas y Biologia del Cáncer, Centro Cientifico y Tecnologico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
University of South Dakota, Sanford School of Medicine, Vermillion, SD, United States
Sección de Patología Mamaria, Servicio de Ginecología, Complejo Médico Policial 'Churruca-Visca', Buenos Aires, Argentina
Clínica de Microcirugía, Buenos Aires, Argentina
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Fisiología, Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
Laboratorio de Reproducción y Lactancia, Centro Científico y Tecnologico Mendoza, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
Palabras clave:Adipose tissue; Epithelial-stromal interaction; Human breast cancer; Proteomics analysis; Tumor microenvironment; angiogenin; apolipoprotein A1; apolipoprotein A2; complement component C3; CXCL1 chemokine; CXCL2 chemokine; CXCL3 chemokine; desmin; interleukin 6; interleukin 8; monocyte chemotactic protein 1; monocyte chemotactic protein 2; RANTES; vimentin; adipose tissue; Article; body mass; breast cancer; cancer grading; cancer staging; cell communication; complement activation; controlled study; correlation analysis; cytokine release; explant; histopathology; human; human tissue; immune response; liquid chromatography-mass spectrometry; metabolism; molecular biology; polyacrylamide gel electrophoresis; protein analysis; protein function; proteomics; signal transduction
Año:2018
Volumen:9
Número:57
Página de inicio:31007
Página de fin:31017
DOI: http://dx.doi.org/10.18632/oncotarget.25749
Título revista:Oncotarget
Título revista abreviado:Oncotarget
ISSN:19492553
CAS:angiogenin, 97950-81-7; complement component C3, 80295-41-6; interleukin 8, 114308-91-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v9_n57_p31007_Fletcher

Referencias:

  • Mueller, M.M., Fusenig, N.E., Friends or foes-bipolar effects of the tumour stroma in cancer (2004) Nat Rev Cancer, 4, pp. 839-849. , http://doi.org/10.1038/nrc1477
  • Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth (2008) Oncogene, 27, pp. 5904-5912. , http://doi.org/10.1038/onc.2008.271
  • Balkwill, F.R., Capasso, M., Hagemann, T., The tumor microenvironment at a glance (2012) J Cell Sci, 125, pp. 5591-5596. , https://doi.org/10.1242/jcs.116392
  • Bezdenezhnykh, N., Semesiuk, N., Lykhova, O., Zhylchuk, V., Kudryavets, Y., Impact of stromal cell components of tumor microenvironment on epithelial-mesenchymal transition in breast cancer cells (2014) Exp Oncol, 36, pp. 72-78
  • Xing, F., Saidou, J., Watabe, K., Cancer associated fibroblasts (CAFs) in tumor microenvironment (2010) Front Biosci, 15, pp. 166-179. , http://doi.org/10.2741/3613
  • Kan, S., Konishi, E., Arita, T., Ikemoto, C., Takenaka, H., Yanagisawa, A., Katoh, N., Asai, J., Podoplanin expression in cancer-associated fibroblasts predicts aggressive behavior in melanoma (2014) J Cutan Pathol, 41, pp. 561-567. , http://doi.org/10.1111/cup.12322
  • Kaur, S., Elkahloun, A.G., Singh, S.P., Arakelyan, A., Roberts, D.D., A function-blocking CD47 antibody modulates extracellular vesicle-mediated intercellular signaling between breast carcinoma cells and endothelial cells (2018) J Cell Commun Signal, 12, pp. 157-170. , http://doi.org/10.1007/s12079-017-0428-0
  • Davidsson, S., Andren, O., Ohlson, A.L., Carlsson, J., Andersson, S.O., Giunchi, F., Rider, J.R., Fiorentino, M., FOXP3+ regulatory T cells in normal prostate tissue, postatrophic hyperplasia, prostatic intraepithelial neoplasia, and tumor histological lesions in men with and without prostate cancer (2018) Prostate, 78, pp. 40-47. , http://doi.org/10.1002/pros.23442
  • Moreira, Â., Pereira, S.S., Costa, M., Morais, T., Pinto, A., Fernandes, R., Monteiro, M.P., Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells (2015) PLoS One, 10. , http://doi.org/10.1371/journal.pone.0123217
  • Wang, C., Gao, C., Meng, K., Qiao, H., Wang, Y., Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2 (2015) PLoS One, 10. , http://doi.org/10.1371/journal.pone.0119348
  • Wang, Y.Y., Attané, C., Milhas, D., Dirat, B., Dauvillier, S., Guerard, A., Gilhodes, J., Hervé, C., Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells (2017) JCI Insight, 2. , http://doi.org/10.1172/jci.insight.87489
  • Campo-Verde-Arbocco, F., López-Laur, J.D., Romeo, L.R., Giorlando, N., Bruna, F.A., Contador, D.E., López-Fontana, G., Pistone Creydt, V., Human renal adipose tissue induces the invasion and progression of renal cell carcinoma (2017) Oncotarget, 8, pp. 94223-94234. , http://doi.org/10.18632/oncotarget.21666
  • Bulun, S.E., Simpson, E.R., Breast cancer and expression of aromatase in breast adipose tissue (1994) Trends Endocrinol Metab, 5, pp. 113-120. , http://doi.org/10.1016/1043-2760(94)90092-2
  • Nieman, K.M., Romero, I.L., Van Houten, B., Lengyel, E., Adipose tissue and adipocytes support tumorigenesis and metastasis (2013) Biochim Biophys Acta, 1831, pp. 1533-1541. , http://doi.org/10.1016/j.bbalip.2013.02.010
  • Careaga, V.P., Sacca, P.A., Mazza, O.N., Scorticati, C., Vitagliano, G., Fletcher, S.J., Maier, M.S., Calvo, J.C., Fatty acid composition of human periprostatic adipose tissue from argentine patients and its relationship to prostate cancer and benign prostatic hyperplasia (2015) Research in Cancer and Tumor, 4, pp. 1-6
  • Pistone Creydt, V., Fletcher, S.J., Giudice, J., Bruzzone, A., Chasseing, N.A., Gonzalez, E.G., Sacca, P.A., Calvo, J.C., Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells (2013) Clin Transl Oncol, 15, pp. 124-131. , http://doi.org/10.1007/s12094-012-0896-x
  • Fletcher, S.J., Sacca, P.A., Pistone-Creydt, M., Coló, F.A., Serra, M.F., Santino, F.E., Sasso, C.V., Pistone-Creydt, V., Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer (2017) J Exp Clin Cancer Res, 36, p. 26. , http://doi.org/10.1186/s13046-017-0494-4
  • Celis, J.E., Moreira, J.M., Cabezón, T., Gromov, P., Friis, E., Rank, F., Gromova, I., Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions (2005) Mol Cell Proteomics, 4, pp. 492-522. , http://doi.org/10.1074/mcp.M500030-MCP200
  • Lapeire, L., Hendrix, A., Lecoutere, E., Van Bockstal, M., Vandesompele, J., Maynard, D., Braems, G., De Wever, O., Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth (2017) Oncotarget, 8, pp. 47239-47249. , http://doi.org/10.18632/oncotarget.17592
  • Gupta, A., Rezvani, R., Lapointe, M., Poursharifi, P., Marceau, P., Tiwari, S., Tchernof, A., Cianflone, K., Downregulation of complement C3 and C3aR expression in subcutaneous adipose tissue in obese women (2014) PLoS One, 9. , http://doi.org/10.1371/journal.pone.0095478
  • Balkwill, F., Charles, K.A., Mantovani, A., Smoldering and polarized inflammation in the initiation and promotion of malignant disease (2005) Cancer Cell, 7, pp. 211-217. , http://doi.org/10.1016/j.ccr.2005.02.013
  • Howe, L.R., Subbaramaiah, K., Hudis, C.A., Dannenberg, A.J., Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer (2013) Clin Cancer Res, 19, pp. 6074-6083. , https://doi.org/10.1158/1078-0432.CCR-12-2603
  • Radisky, E.S., Radisky, D.C., Stromal induction of breast cancer: inflammation and invasion (2007) Rev Endocr Metab Disord, 8, pp. 279-287. , http://doi.org/10.1007/s11154-007-9037-1
  • Beloribi-Djefaflia, S., Vasseur, S., Guillaumond, F., Lipid metabolic reprogramming in cancer cells (2016) Oncogenesis, 5. , http://doi.org/10.1038/oncsis.2015.49
  • Gazi, E., Gardner, P., Lockyer, N.P., Hart, C.A., Brown, M.D., Clarke, N.W., Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy (2007) J Lipid Res, 48, pp. 1846-1856. , http://doi.org/10.1194/jlr.M700131-JLR200
  • Nieman, K.M., Kenny, H.A., Penicka, C.V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M.R., Romero, I.L., Lengyel, E., Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth (2011) Nat Med, 17, pp. 1498-1503. , http://doi.org/10.1038/nm.2492
  • Gravina, G.L., Mancini, A., Ranieri, G., Di Pasquale, B., Marampon, F., Di Clemente, L., Ricevuto, E., Festuccia, C., Phenotypic characterization of human prostatic stromal cells in primary cultures derived from human tissue samples (2013) Int J Oncol, 42, pp. 2116-2122. , http://doi.org/10.3892/ijo.2013.1892
  • Satelli, A., Li, S., Vimentin in cancer and its potential as a molecular target for cancer therapy (2011) Cell Mol Life Sci, 68, pp. 3033-3046. , http://doi.org/10.1007/s00018-011-0735-1
  • Alvarez-Llamas, G., Szalowska, E., de Vries, M.P., Weening, D., Landman, K., Hoek, A., Wolffenbuttel, B.H., Vonk, R.J., Characterization of the human visceral adipose tissue secretome (2007) Mol Cell Proteomics, 6, pp. 589-600. , http://doi.org/10.1074/mcp.M600265-MCP200
  • Mor-Vaknin, N., Punturieri, A., Sitwala, K., Markovitz, D.M., Vimentin is secreted by activated macrophages (2003) Nat Cell Biol, 5, pp. 59-63. , http://doi.org/10.1038/ncb898
  • Greco, T.M., Seeholzer, S.H., Mak, A., Spruce, L., Ischiropoulos, H., Quantitative mass spectrometry-based proteomics reveals the dynamic range of primary mouse astrocyte protein secretion (2010) J Proteome Res, 9, pp. 2764-2774. , http://doi.org/10.1021/pr100134n
  • Chugh, S., Ouzounian, M., Lu, Z., Mohamed, S., Li, W., Bousette, N., Liu, P.P., Gramolini, A.O., Pilot study identifying myosin heavy chain 7, desmin, insulin-like growth factor 7, and annexin A2 as circulating biomarkers of human heart failure (2013) Proteomics, 13, pp. 2324-2334. , http://doi.org/10.1002/pmic.201200455
  • Arentz, G., Chataway, T., Price, T.J., Izwan, Z., Hardi, G., Cummins, A.G., Hardingham, J.E., Desmin expression in colorectal cancer stroma correlates with advanced stage disease and marks angiogenic microvessels (2011) Clin Proteomics, 8, p. 16. , http://doi.org/10.1186/1559-0275-8-16
  • Théry, C., Exosomes: secreted vesicles and intercellular communications (2011) F1000 Biol Rep, 3, p. 15. , http://doi.org/10.3410/B3-15
  • Coakley, G., Maizels, R.M., Buck, A.H., Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections (2015) Trends Parasitol, 31, pp. 477-489. , http://doi.org/10.1016/j.pt.2015.06.009
  • Simpson, R.J., Jensen, S.S., Lim, J.W., Proteomic profiling of exosomes: current perspectives (2008) Proteomics, 8, pp. 4083-4099. , https://doi.org/10.1002/pmic.200800109
  • Takahashi, A., Okada, R., Nagao, K., Kawamata, Y., Hanyu, A., Yoshimoto, S., Takasugi, M., Hara, E., Exosomes maintain cellular homeostasis by excreting harmful DNA from cells (2017) Nat Commun, 8, p. 15287. , http://doi.org/10.1038/ncomms15287
  • Walter, M., Liang, S., Ghosh, S., Hornsby, P.J., Li, R., Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells (2009) Oncogene, 28, pp. 2745-2755. , http://doi.org/10.1038/onc.2009.130
  • Fujisaki, K., Fujimoto, H., Sangai, T., Nagashima, T., Sakakibara, M., Shiina, N., Kuroda, M., Miyazaki, M., Cancermediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1 (2015) Breast Cancer Res Treat, 150, pp. 255-263. , http://doi.org/10.1007/s10549-015-3318-2
  • Wei, H.J., Zeng, R., Lu, J.H., Lai, W.F., Chen, W.H., Liu, H.Y., Chang, Y.T., Deng, W.P., Adipose-derived stem cells promote tumor initiation and accelerate tumor growth by interleukin-6 production (2015) Oncotarget, 6, pp. 7713-7726. , http://doi.org/10.18632/oncotarget.3481
  • Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., Wang, Y.Y., Muller, C., Cancerassociated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion (2011) Cancer Res, 71, pp. 2455-2465. , http://doi.org/10.1158/0008-5472.CAN-10-3323
  • Farmaki, E., Chatzistamou, I., Kaza, V., Kiaris, H., A CCL8 gradient drives breast cancer cell dissemination (2016) Oncogene, 35, pp. 6309-6318. , http://doi.org/10.1038/onc.2016.161
  • Hultgren, E.M., Patrick, M.E., Evans, R.L., Stoos, C.T., Egland, K.A., SUSD2 promotes tumor-associated macrophage recruitment by increasing levels of MCP-1 in breast cancer (2017) PLoS One, 12. , http://doi.org/10.1371/journal.pone.0177089
  • Fujimoto, H., Sangai, T., Ishii, G., Ikehara, A., Nagashima, T., Miyazaki, M., Ochiai, A., Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression (2009) Int J Cancer, 125, pp. 1276-1284. , http://doi.org/10.1002/ijc.24378
  • Pathan, M., Keerthikumar, S., Ang, C.S., Gangoda, L., Quek, C.Y., Williamson, N.A., Mouradov, D., Stroud, D.A., FunRich: an open access standalone functional enrichment and interaction network analysis tool (2015) Proteomics, 15, pp. 2597-2601. , http://doi.org/10.1002/pmic.201400515
  • Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., Eliceiri, K.W., ImageJ2: ImageJ for the next generation of scientific image data (2017) BMC Bioinformatics, 18, p. 529. , http://doi.org/10.1186/s12859-017-1934-z
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., InfoStat versión 2014 http://www.infostat.com.ar, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

Citas:

---------- APA ----------
Fletcher, S.J., Hapon, M.B., Callegari, E.A., Crosbie, M.L., Santiso, N., Ursino, A., Amato, A.R.,..., Pistone-Creydt, V. (2018) . Comparative proteomics of soluble factors secreted by human breast adipose tissue from tumor and normal breast. Oncotarget, 9(57), 31007-31017.
http://dx.doi.org/10.18632/oncotarget.25749
---------- CHICAGO ----------
Fletcher, S.J., Hapon, M.B., Callegari, E.A., Crosbie, M.L., Santiso, N., Ursino, A., et al. "Comparative proteomics of soluble factors secreted by human breast adipose tissue from tumor and normal breast" . Oncotarget 9, no. 57 (2018) : 31007-31017.
http://dx.doi.org/10.18632/oncotarget.25749
---------- MLA ----------
Fletcher, S.J., Hapon, M.B., Callegari, E.A., Crosbie, M.L., Santiso, N., Ursino, A., et al. "Comparative proteomics of soluble factors secreted by human breast adipose tissue from tumor and normal breast" . Oncotarget, vol. 9, no. 57, 2018, pp. 31007-31017.
http://dx.doi.org/10.18632/oncotarget.25749
---------- VANCOUVER ----------
Fletcher, S.J., Hapon, M.B., Callegari, E.A., Crosbie, M.L., Santiso, N., Ursino, A., et al. Comparative proteomics of soluble factors secreted by human breast adipose tissue from tumor and normal breast. Oncotarget. 2018;9(57):31007-31017.
http://dx.doi.org/10.18632/oncotarget.25749