Artículo

Cambados, N.; Walther, T.; Nahmod, K.; Tocci, J.M.; Rubinstein, N.; Böhme, I.; Simian, M.; Sampayo, R.; Suberbordes, M.D.V.; Kordon, E.C.; Schere-Levy, C. "Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells" (2017) Oncotarget. 8(51):88475-88487
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Angiotensin (Ang) II, the main effector peptide of the renin-angiotensin system, has been implicated in multiple aspects of cancer progression such as proliferation, migration, invasion, angiogenesis and metastasis. Ang-(1-7), is a biologically active heptapeptide, generated predominantly from AngII by the enzymatic activity of angiotensin converting enzyme 2. Previous studies have shown that Ang-(1-7) counterbalances AngII actions in different pathophysiological settings. In this study, we have analysed the impact of Ang- (1-7) on AngII-induced pro-tumorigenic features on normal murine mammary epithelial cells NMuMG and breast cancer cells MDA-MB-231. AngII stimulated the activation of the survival factor AKT in NMuMG cells mainly through the AT1 receptor. This PI3K/AKT pathway activation also promoted epithelial-mesenchymal transition (EMT). Concomitant treatment of NMuMG cells with AngII and Ang-(1-7) completely abolished EMT features induced by AngII. Furthermore, Ang-(1-7) abrogated AngII induced migration and invasion of the MDA-MB-231 cells as well as pro-angiogenic events such as the stimulation of MMP-9 activity and VEGF expression. Together, these results demonstrate for the first time that Ang-(1-7) counteracts tumor aggressive signals stimulated by AngII in breast cancer cells emerging the peptide as a potential therapy to prevent breast cancer progression. © Cambados et al.

Registro:

Documento: Artículo
Título:Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells
Autor:Cambados, N.; Walther, T.; Nahmod, K.; Tocci, J.M.; Rubinstein, N.; Böhme, I.; Simian, M.; Sampayo, R.; Suberbordes, M.D.V.; Kordon, E.C.; Schere-Levy, C.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Obstetrics, University of Leipzig, Leipzig, Germany
Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
Department Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, Cork, Ireland
Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
Department of Pediatrics, Immunology, Allergy and Rheumatology, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:AKT; Angiotensin II; Angiotensin-(1-7); Breast cancer cells; Epithelial-mesenchymal transition; alpha smooth muscle actin; angiotensin 1 receptor; angiotensin II; angiotensin[1-7]; fibronectin; messenger RNA; mitogen activated protein kinase 1; mitogen activated protein kinase 3; nerve cell adhesion molecule; phosphatidylinositol 3 kinase; protein kinase B; uvomorulin; vasculotropin; angiogenesis; animal cell; Article; breast cancer; breast epithelium cell; cancer inhibition; carcinogenicity; cell invasion; cell survival; cell transformation; controlled study; enzyme activation; enzyme activity; epithelial mesenchymal transition; human; human cell; MDA-MB-231 cell line; metastasis inhibition; migration inhibition; mouse; nonhuman; protein expression; signal transduction
Año:2017
Volumen:8
Número:51
Página de inicio:88475
Página de fin:88487
DOI: http://dx.doi.org/10.18632/oncotarget.19290
Título revista:Oncotarget
Título revista abreviado:Oncotarget
ISSN:19492553
CAS:angiotensin II, 11128-99-7, 68521-88-0; angiotensin[1-7], 39386-80-6; fibronectin, 86088-83-7; mitogen activated protein kinase 1, 137632-08-7; mitogen activated protein kinase 3, 137632-07-6; phosphatidylinositol 3 kinase, 115926-52-8; protein kinase B, 148640-14-6; uvomorulin, 112956-45-3; vasculotropin, 127464-60-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v8_n51_p88475_Cambados

Referencias:

  • Sadoshima, J., Cytokine actions of angiotensin II (2000) Circ Res, 86, pp. 1187-1189. , https://doi.org/10.1161/01.RES.86.12.1187
  • Phillips, M.I., Kagiyama, S., Angiotensin II as a proinflammatory mediator (2002) Curr Opin Investig Drugs, 3, pp. 569-577
  • Diep, Q.N., El, M.M., Touyz, R.M., Schiffrin, E.L., Expression of cell cycle proteins in blood vessels of angiotensin II-infused rats: role of AT(1) receptors (2001) Hypertension, 37, pp. 604-608
  • Clauser, E., Curnow, K.M., Davies, E., Conchon, S., Teutsch, B., Vianello, B., Monnot, C., Corvol, P., Angiotensin II receptors: protein and gene structures, expression and potential pathological involvements (1996) Eur J Endocrinol, 134, pp. 403-411
  • Unger, T., The role of the renin-angiotensin system in the development of cardiovascular disease (2002) Am J Cardiol, 89, pp. 3A-9A
  • Romero, C.A., Orias, M., Weir, M.R., Novel RAAS agonists and antagonists: clinical applications and controversies (2015) Nat Rev Endocrinol, 11, pp. 242-252. , https://doi.org/10.1038/nrendo.2015.6
  • Mercure, C., Yogi, A., Callera, G.E., Aranha, A.B., Bader, M., Ferreira, A.J., Santos, R.A.S., Reudelhuber, T.L., Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart (2008) Circ Res, 103, pp. 1319-1326. , https://doi.org/10.1161/CIRCRESAHA.108.184911
  • Rabelo, L.A., Alenina, N., Bader, M., ACE2-angiotensin-(1-7)-Mas axis and oxidative stress in cardiovascular disease (2011) Hypertens Res, 34, pp. 154-160. , https://doi.org/10.1038/hr.2010.235
  • Santos, R.A., Angiotensin-(1-7) (2014) Hypertens (Dallas, Tex 1979), 63, pp. 1138-1147. , https://doi.org/10.1161/HYPERTENSIONAHA.113.01274
  • Menon, J., Soto-Pantoja, D.R., Callahan, M.F., Cline, J.M., Ferrario, C.M., Tallant, E.A., Gallagher, P.E., Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2 (2007) Cancer Res, 67, pp. 2809-2815. , https://doi.org/10.1158/0008-5472.CAN-06-3614
  • Ferrario, C.M., Chappell, M.C., Dean, R.H., Iyer, S.N., Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis (1998) J Am Soc Nephrol, 9, pp. 1716-1722
  • Santos, R.A., Campagnole-Santos, M.J., Andrade, S.P., Angiotensin-(1-7): an update (2000) Regul Pept, 91, pp. 45-62
  • Tallant, E.A., Diz, D.I., Ferrario, C.M., State-of-the-Art lectur. Antiproliferative actions of angiotensin-(1-7) in vascular smooth muscle (1999) Hypertens (Dallas, Tex 1979), 34, pp. 950-957
  • Krishnan, B., Torti, F.M., Gallagher, P.E., Tallant, E.A., Angiotensin-(1-7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1 (2013) Prostate, 73, pp. 60-70. , https://doi.org/10.1002/pros.22540
  • Santos, R.A., Simoes e Silva, A.C., Maric, C., Silva, D.M., Machado, R.P., de Buhr, I., Heringer-Walther, S., Campagnole-Santos, M.J., Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas (2003) Proc Natl Acad Sci U S A, 100, pp. 8258-8263. , https://doi.org/10.1073/pnas.1432869100
  • Paul, M., Poyan Mehr, A., Kreutz, R., Physiology of local renin-angiotensin systems (2006) Physiol Rev, 86, pp. 747-803. , https://doi.org/10.1152/physrev.00036.2005
  • Inwang, E.R., Puddefoot, J.R., Brown, C.L., Goode, A.W., Marsigliante, S., Ho, M.M., Payne, J.G., Vinson, G.P., Angiotensin II type 1 receptor expression in human breast tissues (1997) Br J Cancer, 75, pp. 1279-1283
  • Tahmasebi, M., Barker, S., Puddefoot, J.R., Vinson, G.P., Localisation of renin-angiotensin system (RAS) components in breast (2006) Br J Cancer, 95, pp. 67-74. , https://doi.org/10.1038/sj.bjc.6603213
  • De Paepe, B., Verstraeten, V.L., De Potter, C.R., Vakaet, L.A., Bullock, G.R., Growth stimulatory angiotensin II type-1 receptor is upregulated in breast hyperplasia and in situ carcinoma but not in invasive carcinoma (2001) Histochem Cell Biol, 116, pp. 247-254. , https://doi.org/10.1007/s004180100313
  • Nahmod, K.A., Walther, T., Cambados, N., Fernandez, N., Meiss, R., Tappenbeck, N., Wang, Y., Pozzi, A.G., AT1 receptor blockade delays postlactational mammary gland involution: a novel role for the renin angiotensin system (2012) FASEB J, 26, pp. 1982-1994. , https://doi.org/10.1096/fj.11-191932
  • Greco, S., Muscella, A., Elia, M.G., Salvatore, P., Storelli, C., Mazzotta, A., Manca, C., Marsigliante, S., Angiotensin II activates extracellular signal regulated kinases via protein kinase C and epidermal growth factor receptor in breast cancer cells (2003) J Cell Physiol, 196, pp. 370-377. , https://doi.org/10.1002/jcp.10313
  • Walther, T., Menrad, A., Orzechowski, H.D., Siemeister, G., Paul, M., Schirner, M., Differential regulation of in vivo angiogenesis by angiotensin II receptors (2003) FASEB J, 17, pp. 2061-2067. , https://doi.org/10.1096/fj.03-0129com
  • Chen, X., Meng, Q., Zhao, Y., Liu, M., Li, D., Yang, Y., Sun, L., Dong, X., Angiotensin II type 1 receptor antagonists inhibit cell proliferation and angiogenesis in breast cancer (2013) Cancer Lett, 328, pp. 318-324. , https://doi.org/10.1016/j.canlet.2012.10.006
  • Rodrigues-Ferreira, S., Abdelkarim, M., Dillenburg-Pilla, P., Luissint, A.C., di-Tommaso, A., Deshayes, F., Pontes, C.L., Casarini, D.E., Angiotensin II facilitates breast cancer cell migration and metastasis (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0035667
  • Luo, Y., Ohmori, H., Shimomoto, T., Fujii, K., Sasahira, T., Chihara, Y., Kuniyasu, H., Anti-angiotensin and hypoglycemic treatments suppress liver metastasis of colon cancer cells (2011) Pathobiology, 78, pp. 285-290. , https://doi.org/10.1159/000330169
  • Dominska, K., Piastowska-Ciesielska, A.W., Lachowicz-Ochedalska, A., Ochedalski, T., Similarities and differences between effects of angiotensin III and angiotensin II on human prostate cancer cell migration and proliferation (2012) Peptides, 37, pp. 200-206. , https://doi.org/10.1016/j.peptides.2012.07.022
  • Zhao, Y., Chen, X., Cai, L., Yang, Y., Sui, G., Wu, J., Angiotensin II suppresses adriamycin-induced apoptosis through activation of phosphatidylinositol 3-kinase/Akt signaling in human breast cancer cells (2008) Acta Biochim Biophys Sin (Shanghai), 40, pp. 304-310
  • Zhao, Y., Chen, X., Cai, L., Yang, Y., Sui, G., Fu, S., Angiotensin II/angiotensin II type I receptor (AT1R) signaling promotes MCF-7 breast cancer cells survival via PI3-kinase/Akt pathway (2010) J Cell Physiol, 225, pp. 168-173. , https://doi.org/10.1002/jcp.22209
  • Oh, E., Kim, J.Y., Cho, Y., An, H., Lee, N., Jo, H., Ban, C., Seo, J.H., Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis (2016) Biochim Biophys Acta, 1863, pp. 1071-1081. , https://doi.org/10.1016/j.bbamcr.2016.03.010
  • Nieto, M.A., Huang, R.Y., Jackson, R.A., Thiery, J.P., EMT: 2016 (2016) Cell, 166, pp. 21-45. , https://doi.org/10.1016/j.cell.2016.06.028
  • Deshayes, F., Nahmias, C., Angiotensin receptors: a new role in cancer? (2005) Trends Endocrinol Metab, 16, pp. 293-299. , https://doi.org/10.1016/j.tem.2005.07.009
  • George, A.J., Thomas, W.G., Hannan, R.D., The reninangiotensin system and cancer: old dog, new tricks (2010) Nat Rev Cancer, 10, pp. 745-759. , https://doi.org/10.1038/nrc2945
  • Miyajima, A., Kosaka, T., Asano, T., Asano, T., Seta, K., Kawai, T., Hayakawa, M., Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis (2002) Cancer Res, 62, pp. 4176-4179
  • Fujita, M., Hayashi, I., Yamashina, S., Itoman, M., Majima, M., Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis (2002) Biochem Biophys Res Commun, 294, pp. 441-447. , https://doi.org/10.1016/S0006-291X(02)00496-5
  • Takahashi, T., Taniguchi, T., Konishi, H., Kikkawa, U., Ishikawa, Y., Yokoyama, M., Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells (1999) Am J Physiol, 276, pp. H1927-H1934
  • Tetzner, A., Gebolys, K., Meinert, C., Klein, S., Uhlich, A., Trebicka, J., Villacañas, Ó., Walther, T., G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase (2016) Hypertens (Dallas, Tex 1979), 68, pp. 185-194. , https://doi.org/10.1161/HYPERTENSIONAHA.116.07572
  • Klein, N., Gembardt, F., Supé, S., Kaestle, S.M., Nickles, H., Erfinanda, L., Lei, X., Kuebler, W.M., Angiotensin-(1-7) protects from experimental acute lung injury (2013) Crit Care Med, 41, pp. e334-e343. , https://doi.org/10.1097/CCM.0b013e31828a6688
  • Lotz-Jenne, C., Lüthi, U., Ackerknecht, S., Lehembre, F., Fink, T., Stritt, M., Wirth, M., Meyer-Schaller, N., A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGFβ receptor (2016) Oncotarget, 7, pp. 25983-26002. , https://doi.org/10.18632/oncotarget.8418
  • Klymkowsky, M.W., Savagner, P., Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe (2009) Am J Pathol, 174, pp. 1588-1593. , https://doi.org/10.2353/ajpath.2009.080545
  • Heldin, C.H., Vanlandewijck, M., Moustakas, A., Regulation of EMT by TGFβ in cancer (2012) FEBS Lett, 586, pp. 1959-1970. , https://doi.org/10.1016/j.febslet.2012.02.037
  • Wu, Y., Sarkissyan, M., Vadgama, J.V., Epithelial-Mesenchymal Transition and Breast Cancer (2016) J Clin Med, p. 5. , https://doi.org/10.3390/jcm5020013
  • Kalluri, R., Weinberg, R.A., The basics of epithelialmesenchymal transition (2009) J Clin Invest, 119, pp. 1420-1428. , https://doi.org/10.1172/JCI39104
  • Fantozzi, A., Gruber, D.C., Pisarsky, L., Heck, C., Kunita, A., Yilmaz, M., Meyer-Schaller, N., Christofori, G., VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation (2014) Cancer Res, 74, pp. 1566-1575. , https://doi.org/10.1158/0008-5472.CAN-13-1641
  • Zhao, Y., Wang, H., Li, X., Cao, M., Lu, H., Meng, Q., Pang, H., Cai, L., Ang II-AT1R increases cell migration through PI3K/AKT and NF-κB pathways in breast cancer (2014) J Cell Physiol, 229, pp. 1855-1862. , https://doi.org/10.1002/jcp.24639
  • Egami, K., Murohara, T., Shimada, T., Sasaki, K.I., Shintani, S., Sugaya, T., Ishii, M., Imaizumi, T., Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth (2003) J Clin Invest, 112, pp. 67-75. , https://doi.org/10.1172/JCI16645
  • Imai, N., Hashimoto, T., Kihara, M., Yoshida, S., Kawana, I., Yazawa, T., Kitamura, H., Umemura, S., Roles for host and tumor angiotensin II type 1 receptor in tumor growth and tumor-associated angiogenesis (2007) Lab Invest, 87, pp. 189-198. , https://doi.org/10.1038/labinvest.3700504
  • Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Verástegui, E., Involvement of chemokine receptors in breast cancer metastasis (2001) Nature, 410, pp. 50-56. , https://doi.org/10.1038/35065016
  • Ye, Y., Tang, X., Sun, Z., Chen, S., Upregulated WDR26 serves as a scaffold to coordinate PI3K/AKT pathway-driven breast cancer cell growth, migration, and invasion (2016) Oncotarget, 7, pp. 17854-17869. , https://doi.org/10.18632/oncotarget.7439
  • Ishimatsu, S., Itakura, A., Okada, M., Kotani, T., Iwase, A., Kajiyama, H., Ino, K., Kikkawa, F., Angiotensin II augmented migration and invasion of choriocarcinoma cells involves PI3K activation through the AT1 receptor (2006) Placenta, 27, pp. 587-591. , https://doi.org/10.1016/j.placenta.2005.07.001
  • Deckers, M., van Dinther, M., Buijs, J., Que, I., Löwik, C., van der Pluijm, G., ten Dijke, P., The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells (2006) Cancer Res, 66, pp. 2202-2209. , https://doi.org/10.1158/0008-5472.CAN-05-3560
  • Yang, F., Huang, X.R., Chung, A.C., Hou, C.C., Lai, K.N., Lan, H.Y., Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition (2010) J Pathol, 221, pp. 390-401. , https://doi.org/10.1002/path.2721
  • Carvajal, G., Rodríguez-Vita, J., Rodrigues-Díez, R., Sánchez-López, E., Rupérez, M., Cartier, C., Esteban, V., Ruiz-Ortega, M., Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation (2008) Kidney Int, 74, pp. 585-595. , https://doi.org/10.1038/ki.2008.213
  • Gallagher, P.E., Tallant, E.A., Inhibition of human lung cancer cell growth by angiotensin-(1-7) (2004) Carcinogenesis, 25, pp. 2045-2052. , https://doi.org/10.1093/carcin/bgh236
  • Cook, K.L., Metheny-Barlow, L.J., Tallant, E.A., Gallagher, P.E., Angiotensin-(1-7) reduces fibrosis in orthotopic breast tumors (2010) Cancer Res, 70, pp. 8319-8328. , https://doi.org/10.1158/0008-5472.CAN-10-1136
  • Pei, N., Wan, R., Chen, X., Li, A., Zhang, Y., Li, J., Du, H., Sumners, C., Angiotensin-(1-7) Decreases Cell Growth and Angiogenesis of Human Nasopharyngeal Carcinoma Xenografts (2016) Mol Cancer Ther, 15, pp. 37-47. , https://doi.org/10.1158/1535-7163.MCT-14-0981
  • Katz, M., Amit, I., Yarden, Y., Regulation of MAPKs by growth factors and receptor tyrosine kinases (2007) Biochim Biophys Acta, 1773, pp. 1161-1176. , https://doi.org/10.1016/j.bbamcr.2007.01.002
  • Galis, Z.S., Johnson, C., Godin, D., Magid, R., Shipley, J.M., Senior, R.M., Ivan, E., Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling (2002) Circ Res, 91, pp. 852-859
  • Zhang, F., Hu, Y., Xu, Q., Ye, S., Different effects of angiotensin II and angiotensin-(1-7) on vascular smooth muscle cell proliferation and migration (2010) PLoS One, 5. , https://doi.org/10.1371/journal.pone.0012323
  • Castaneda, C.A., Cortes-Funes, H., Gomez, H.L., Ciruelos, E.M., The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer (2010) Cancer Metastasis Rev, 29, pp. 751-759. , https://doi.org/10.1007/s10555-010-9261-0
  • Murugan, D., Lau, Y.S., Lau, C.W., Mustafa, M.R., Huang, Y., Correction: Angiotensin 1-7 Protects against Angiotensin II-Induced Endoplasmic Reticulum Stress and Endothelial Dysfunction via Mas Receptor (2016) PLoS One, 11. , https://doi.org/10.1371/journal.pone.0147892
  • Levy, C.S., Slomiansky, V., Gattelli, A., Nahmod, K., Pelisch, F., Blaustein, M., Srebrow, A., Kordon, E.C., Tumor necrosis factor alpha induces LIF expression through ERK1/2 activation in mammary epithelial cells (2010) J Cell Biochem, 110, pp. 857-865

Citas:

---------- APA ----------
Cambados, N., Walther, T., Nahmod, K., Tocci, J.M., Rubinstein, N., Böhme, I., Simian, M.,..., Schere-Levy, C. (2017) . Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells. Oncotarget, 8(51), 88475-88487.
http://dx.doi.org/10.18632/oncotarget.19290
---------- CHICAGO ----------
Cambados, N., Walther, T., Nahmod, K., Tocci, J.M., Rubinstein, N., Böhme, I., et al. "Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells" . Oncotarget 8, no. 51 (2017) : 88475-88487.
http://dx.doi.org/10.18632/oncotarget.19290
---------- MLA ----------
Cambados, N., Walther, T., Nahmod, K., Tocci, J.M., Rubinstein, N., Böhme, I., et al. "Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells" . Oncotarget, vol. 8, no. 51, 2017, pp. 88475-88487.
http://dx.doi.org/10.18632/oncotarget.19290
---------- VANCOUVER ----------
Cambados, N., Walther, T., Nahmod, K., Tocci, J.M., Rubinstein, N., Böhme, I., et al. Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells. Oncotarget. 2017;8(51):88475-88487.
http://dx.doi.org/10.18632/oncotarget.19290