Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas. © 2018 Impact Journals.

Registro:

Documento: Artículo
Título:Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated
Autor:Bracalente, C.; Ibañez, I.L.; Berenstein, A.; Notcovich, C.; Cerda, M.B.; Klamt, F.; Chernomoretz, A.; Durán, H.
Filiación:Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
Palabras clave:AOS network; Melanogenesis; Melanoma; Metastasis; Microarrays; antioxidant; catalase; contactin 1; reactive oxygen metabolite; tyrosinase related protein 1; ubiquitin; catalase; reactive oxygen metabolite; transcriptome; A-375 cell line; animal cell; antiproliferative activity; Article; cancer growth; cancer prognosis; cancer regression; CNTN1 gene; controlled study; down regulation; embryo; EPHX2 gene; gene; gene expression profiling; gene expression regulation; gene overexpression; GSR gene; GSTM3 gene; human; human cell; hydrogen peroxide scavenging assay; melanogenesis; melanoma; metastatic melanoma; MGST1 gene; MGST3 gene; mouse; MSRA gene; nonhuman; nuclear reprogramming; oxidative stress; pathophysiology; phenotype; tumor cell; TXNRD3 gene; TYRP1 gene; UCHL1 gene; upregulation; amelanotic melanoma; cell proliferation; disease exacerbation; gene expression regulation; genetics; metabolism; metastasis; microarray analysis; pathology; skin tumor; tumor cell line; Antioxidants; Catalase; Cell Line, Tumor; Cell Proliferation; Disease Progression; Down-Regulation; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Melanoma, Amelanotic; Microarray Analysis; Neoplasm Metastasis; Oxidative Stress; Reactive Oxygen Species; Skin Neoplasms; Transcriptome; Up-Regulation
Año:2016
Volumen:7
Número:27
Página de inicio:41154
Página de fin:41171
Título revista:Oncotarget
Título revista abreviado:Oncotarget
ISSN:19492553
CAS:catalase, 9001-05-2; ubiquitin, 60267-61-0; Antioxidants; Catalase; Reactive Oxygen Species
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v7_n27_p41154_Bracalente

Referencias:

  • Cakir, Y., Ballinger, S.W., Reactive species-mediated regulation of cell signaling and the cell cycle: the role of MAPK (2005) Antioxid Redox Signal, 7, pp. 726-740
  • Arnold, R.S., Shi, J., Murad, E., Whalen, A.M., Sun, C.Q., Polavarapu, R., Parthasarathy, S., Lambeth, J.D., Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 (2001) Proc Natl Acad Sci U S A, 98, pp. 5550-5555
  • Meyskens, F.L., Jr., Farmer, P., Fruehauf, J.P., Redox regulation in human melanocytes and melanoma (2001) Pigment Cell Res, 14, pp. 148-154
  • Condeelis, J., Singer, R.H., Segall, J.E., The great escape: when cancer cells hijack the genes for chemotaxis and motility (2005) Annu Rev Cell Dev Biol, 21, pp. 695-718
  • Nishikawa, M., Reactive oxygen species in tumor metastasis (2008) Cancer Lett, 266, pp. 53-59
  • Pani, G., Galeotti, T., Chiarugi, P., Metastasis: cancer cell's escape from oxidative stress (2010) Cancer Metastasis Rev, 29, pp. 351-378
  • Behrend, L., Henderson, G., Zwacka, R.M., Reactive oxygen species in oncogenic transformation (2003) Biochem Soc Trans, 31, pp. 1441-1444
  • Zhang, Y., Du, Y., Le, W., Wang, K., Kieffer, N., Zhang, J., Redox control of the survival of healthy and diseased cells (2011) Antioxid Redox Signal, 15, pp. 2867-2908
  • da Lisboa Motta, L., Muller, C.B., De Bastiani, M.A., Behr, G.A., Franca, F.S., da Rocha, R.F., Minotto, J.B., Castro, M.A., Imbalance in redox status is associated with tumor aggressiveness and poor outcome in lung adenocarcinoma patients (2014) J Cancer Res Clin Oncol, 140, pp. 461-470
  • Policastro, L., Molinari, B., Larcher, F., Blanco, P., Podhajcer, O.L., Costa, C.S., Rojas, P., Duran, H., Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide (2004) Mol Carcinog, 39, pp. 103-113
  • Hyoudou, K., Nishikawa, M., Ikemura, M., Kobayashi, Y., Mendelsohn, A., Miyazaki, N., Tabata, Y., Hashida, M., Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase (2009) J Control Release, 137, pp. 110-115
  • Fiaschi, T., Chiarugi, P., Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison (2012) Int J Cell Biol, 2012
  • Kim, S., Kim do, H., Jung, W.H., Koo, J.S., The expression of redox proteins in phyllodes tumor (2013) Breast Cancer Res Treat, 141, pp. 365-374
  • Liu-Smith, F., Dellinger, R., Meyskens, F.L., Jr., Updates of reactive oxygen species in melanoma etiology and progression (2014) Arch Biochem Biophys, 563, pp. 51-55
  • Rotblat, B., Grunewald, T.G., Leprivier, G., Melino, G., Knight, R.A., Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers (2013) Oncotarget, 4, pp. 2577-2590
  • Ibanez, I.L., Policastro, L.L., Tropper, I., Bracalente, C., Palmieri, M.A., Rojas, P.A., Molinari, B.L., Duran, H., H2O2 scavenging inhibits G1/S transition by increasing nuclear levels of p27KIP1 (2011) Cancer Lett, 305, pp. 58-68
  • Policastro, L.L., Ibanez, I.L., Duran, H.A., Soria, G., Gottifredi, V., Podhajcer, O.L., Suppression of cancer growth by nonviral gene therapy based on a novel reactive oxygen speciesresponsive promoter (2009) Mol Ther, 17, pp. 1355-1364
  • Brown, M.R., Miller, F.J., Jr., Li, W.G., Ellingson, A.N., Mozena, J.D., Chatterjee, P., Engelhardt, J.F., Weintraub, N.L., Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells (1999) Circ Res, 85, pp. 524-533
  • Glorieux, C., Dejeans, N., Sid, B., Beck, R., Calderon, P.B., Verrax, J., Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy (2011) Biochem Pharmacol, 82, pp. 1384-1390
  • Balch, C.M., Gershenwald, J.E., Soong, S.J., Thompson, J.F., Atkins, M.B., Byrd, D.R., Buzaid, A.C., Gimotty, P.A., Final version of 2009 AJCC melanoma staging and classification (2009) J Clin Oncol, 27, pp. 6199-6206
  • Hoek, K., Rimm, D.L., Williams, K.R., Zhao, H., Ariyan, S., Lin, A., Kluger, H.M., Yoshikawa, K., Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas (2004) Cancer Res, 64, pp. 5270-5282
  • Mohebiany, A.N., Harroch, S., Bouyain, S., New insights into the roles of the contactin cell adhesion molecules in neural development (2014) Adv Neurobiol, 8, pp. 165-194
  • Hu, Q.D., Ang, B.T., Karsak, M., Hu, W.P., Cui, X.Y., Duka, T., Takeda, Y., Small, D., F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation (2003) Cell, 115, pp. 163-175
  • Ghanem, G., Fabrice, J., Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma (2011) Mol Oncol, 5, pp. 150-155
  • Liu, K., Wang, G., Ding, H., Chen, Y., Yu, G., Wang, J., Downregulation of metastasis suppressor 1(MTSS1) is associated with nodal metastasis and poor outcome in Chinese patients with gastric cancer (2010) BMC Cancer, 10, p. 428
  • Monaghan-Benson, E., Burridge, K., Mutant B-RAF regulates a Rac-dependent cadherin switch in melanoma (2013) Oncogene, 32, pp. 4836-4844
  • Yamazaki, K., Takamura, M., Masugi, Y., Mori, T., Du, W., Hibi, T., Hiraoka, N., Sakamoto, M., Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility (2009) Lab Invest, 89, pp. 425-432
  • Fang, D., Hallman, J., Sangha, N., Kute, T.E., Hammarback, J.A., White, W.L., Setaluri, V., Expression of microtubule-associated protein 2 in benign and malignant melanocytes: implications for differentiation and progression of cutaneous melanoma (2001) Am J Pathol, 158, pp. 2107-2115
  • Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Mesirov, J.P., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles (2005) Proc Natl Acad Sci U S A, 102, pp. 15545-15550
  • Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Patterson, N., PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes (2003) Nat Genet, 34, pp. 267-273
  • Maresca, V., Flori, E., Briganti, S., Mastrofrancesco, A., Fabbri, C., Mileo, A.M., Paggi, M.G., Picardo, M., Correlation between melanogenic and catalase activity in in vitro human melanocytes: a synergic strategy against oxidative stress (2008) Pigment Cell Melanoma Res, 21, pp. 200-205
  • Jimenez-Cervantes, C., Martinez-Esparza, M., Perez, C., Daum, N., Solano, F., Garcia-Borron, J.C., Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor (2001) J Cell Sci, 114, pp. 2335-2344
  • Durbec, P., Gennarini, G., Goridis, C., Rougon, G., A soluble form of the F3 neuronal cell adhesion molecule promotes neurite outgrowth (1992) J Cell Biol, 117, pp. 877-887
  • Wulfanger, J., Biehl, K., Tetzner, A., Wild, P., Ikenberg, K., Meyer, S., Seliger, B., Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 in melanoma (2013) Int J Cancer, 133, pp. 2522-2532
  • Lin, J., Liu, J., Wang, Y., Zhu, J., Zhou, K., Smith, N., Zhan, X., Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein (2005) Oncogene, 24, pp. 2059-2066
  • Zhang, S., Qi, Q., MTSS1 suppresses cell migration and invasion by targeting CTTN in glioblastoma (2015) J Neurooncol, 121, pp. 425-431
  • Zhong, J., Shaik, S., Wan, L., Tron, A.E., Wang, Z., Sun, L., Inuzuka, H., Wei, W., SCF beta-TRCP targets MTSS1 for ubiquitination-mediated destruction to regulate cancer cell proliferation and migration (2013) Oncotarget, 4, pp. 2339-2353
  • Mertz, K.D., Pathria, G., Wagner, C., Saarikangas, J., Sboner, A., Romanov, J., Gschaider, M., Lappalainen, P., MTSS1 is a metastasis driver in a subset of human melanomas (2014) Nat Commun, 5, p. 3465
  • Loberg, R.D., Neeley, C.K., Adam-Day, L.L., Fridman, Y., St John, L.N., Nixdorf, S., Jackson, P., Pienta, K.J., Differential expression analysis of MIM (MTSS1) splice variants and a functional role of MIM in prostate cancer cell biology (2005) Int J Oncol, 26, pp. 1699-1705
  • Parr, C., Jiang, W.G., Metastasis suppressor 1 (MTSS1) demonstrates prognostic value and anti-metastatic properties in breast cancer (2009) Eur J Cancer, 45, pp. 1673-1683
  • Lee, Y.G., Macoska, J.A., Korenchuk, S., Pienta, K.J., MIM, a potential metastasis suppressor gene in bladder cancer (2002) Neoplasia, 4, pp. 291-294
  • Nixdorf, S., Grimm, M.O., Loberg, R., Marreiros, A., Russell, P.J., Pienta, K.J., Jackson, P., Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines (2004) Cancer Lett, 215, pp. 209-220
  • Wang, J., Li, J., Shen, J., Wang, C., Yang, L., Zhang, X., MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma (2012) BMC Cancer, 12, p. 227
  • Dawson, J.C., Timpson, P., Kalna, G., Machesky, L.M., Mtss1 regulates epidermal growth factor signaling in head and neck squamous carcinoma cells (2012) Oncogene, 31, pp. 1781-1793
  • Uhlenbrock, K., Eberth, A., Herbrand, U., Daryab, N., Stege, P., Meier, F., Friedl, P., Ahmadian, M.R., The RacGEF Tiam1 inhibits migration and invasion of metastatic melanoma via a novel adhesive mechanism (2004) J Cell Sci, 117, pp. 4863-4871
  • Thomassen, M., Tan, Q., Kruse, T.A., Gene expression metaanalysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis (2009) Breast Cancer Res Treat, 113, pp. 239-249
  • Siritantikorn, A., Johansson, K., Ahlen, K., Rinaldi, R., Suthiphongchai, T., Wilairat, P., Morgenstern, R., Protection of cells from oxidative stress by microsomal glutathione transferase 1 (2007) Biochem Biophys Res Commun, 355, pp. 592-596
  • Johansson, K., Jarvliden, J., Gogvadze, V., Morgenstern, R., Multiple roles of microsomal glutathione transferase 1 in cellular protection: a mechanistic study (2010) Free Radic Biol Med, 49, pp. 1638-1645
  • Lei, K.F., Wang, Y.F., Zhu, X.Q., Lu, P.C., Sun, B.S., Jia, H.L., Ren, N., Qin, L.X., Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma (2007) BMC Cancer, 7, p. 172
  • De Luca, A., Sanna, F., Sallese, M., Ruggiero, C., Grossi, M., Sacchetta, P., Rossi, C., Favaloro, B., Methionine sulfoxide reductase A down-regulation in human breast cancer cells results in a more aggressive phenotype (2010) Proc Natl Acad Sci U S A, 107, pp. 18628-18633
  • Zhou, Z., Li, C.Y., Li, K., Wang, T., Zhang, B., Gao, T.W., Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo (2009) Br J Dermatol, 161, pp. 504-509
  • Schallreuter, K.U., Salem, M.A., Holtz, S., Panske, A., Basic evidence for epidermal H2O2/ONOO(-)-mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS (2013) FASEB J, 27, pp. 3113-3122
  • Schallreuter, K.U., Lemke, K.R., Hill, H.Z., Wood, J.M., Thioredoxin reductase induction coincides with melanin biosynthesis in brown and black guinea pigs and in murine melanoma cells (1994) J Invest Dermatol, 103, pp. 820-824
  • Tan, X., Zhai, Y., Chang, W., Hou, J., He, S., Lin, L., Yu, Y., Cao, G., Global analysis of metastasis-associated gene expression in primary cultures from clinical specimens of clear-cell renal-cell carcinoma (2008) Int J Cancer, 123, pp. 1080-1088
  • Zhou, C., Nitschke, A.M., Xiong, W., Zhang, Q., Tang, Y., Bloch, M., Elliott, S., McLachlan, J.A., Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype (2008) Breast Cancer Res, 10, p. R105
  • Scharlau, D., Borowicki, A., Habermann, N., Hofmann, T., Klenow, S., Miene, C., Munjal, U., Glei, M., Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre (2009) Mutat Res, 682, pp. 39-53
  • Itoh, S., Kim, H.W., Nakagawa, O., Ozumi, K., Lessner, S.M., Aoki, H., Akram, K., Fukai, T., Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation (2008) J Biol Chem, 283, pp. 9157-9167
  • Cai, H., Peng, F., Knockdown of copper chaperone antioxidant-1 by RNA interference inhibits copper-stimulated proliferation of non-small cell lung carcinoma cells (2013) Oncol Rep, 30, pp. 269-275
  • Suh, I., Weng, J., Fernandez-Ranvier, G., Shen, W.T., Duh, Q.Y., Clark, O.H., Kebebew, E., Antineoplastic effects of decitabine, an inhibitor of DNA promoter methylation, in adrenocortical carcinoma cells (2010) Arch Surg, 145, pp. 226-232
  • Nicolussi, A., D'Inzeo, S., Mincione, G., Buffone, A., Di Marcantonio, M.C., Cotellese, R., Cichella, A., Coppa, A., PRDX1 and PRDX6 are repressed in papillary thyroid carcinomas via BRAF V600E-dependent and-independent mechanisms (2014) Int J Oncol, 44, pp. 548-556
  • Hendriksen, P.J., Dits, N.F., Kokame, K., Veldhoven, A., van Weerden, W.M., Bangma, C.H., Trapman, J., Jenster, G., Evolution of the androgen receptor pathway during progression of prostate cancer (2006) Cancer Res, 66, pp. 5012-5020
  • Gumy-Pause, F., Pardo, B., Khoshbeen-Boudal, M., Ansari, M., Gayet-Ageron, A., Sappino, A.P., Attiyeh, E.F., Ozsahin, H., GSTP1 hypermethylation is associated with reduced protein expression, aggressive disease and prognosis in neuroblastoma (2012) Genes Chromosomes Cancer, 51, pp. 174-185
  • Brabender, J., Lord, R.V., Wickramasinghe, K., Metzger, R., Schneider, P.M., Park, J.M., Holscher, A.H., Danenberg, P.V., Glutathione S-transferasepi expression is downregulated in patients with Barrett's esophagus and esophageal adenocarcinoma (2002) J Gastrointest Surg, 6, pp. 359-367
  • Peng, D., Belkhiri, A., Hu, T., Chaturvedi, R., Asim, M., Wilson, K.T., Zaika, A., El-Rifai, W., Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells (2012) Gut, 61, pp. 1250-1260
  • Peng, D.F., Hu, T.L., Soutto, M., Belkhiri, A., El-Rifai, W., Loss of glutathione peroxidase 7 promotes TNF-alphainduced NF-kappaB activation in Barrett's carcinogenesis (2014) Carcinogenesis, 35, pp. 1620-1628
  • Mougiakakos, D., Okita, R., Ando, T., Durr, C., Gadiot, J., Ichikawa, J., Zeiser, R., Kiessling, R., High expression of GCLC is associated with malignant melanoma of low oxidative phenotype and predicts a better prognosis (2012) J Mol Med (Berl), 90, pp. 935-944
  • Soini, Y., Karihtala, P., Mantyniemi, A., Turunen, N., Paakko, P., Kinnula, V., Glutamate-L-cysteine ligase in breast carcinomas (2004) Histopathology, 44, pp. 129-135
  • Chen, L., Kwong, M., Lu, R., Ginzinger, D., Lee, C., Leung, L., Chan, J.Y., Nrf1 is critical for redox balance and survival of liver cells during development (2003) Mol Cell Biol, 23, pp. 4673-4686
  • Xu, Z., Chen, L., Leung, L., Yen, T.S., Lee, C., Chan, J.Y., Liverspecific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia (2005) Proc Natl Acad Sci U S A, 102, pp. 4120-4125
  • Han, W., Ming, M., Zhao, R., Pi, J., Wu, C., He, Y.Y., Nrf1 CNCbZIP protein promotes cell survival and nucleotide excision repair through maintaining glutathione homeostasis (2012) J Biol Chem, 287, pp. 18788-18795
  • Inoue, K., Imai, Y., Identification of novel transcription factors in osteoclast differentiation using genome-wide analysis of open chromatin determined by DNase-seq (2014) J Bone Miner Res, 29, pp. 1823-1832
  • Kim, J., Xing, W., Wergedal, J., Chan, J.Y., Mohan, S., Targeted disruption of nuclear factor erythroid-derived 2-like 1 in osteoblasts reduces bone size and bone formation in mice (2010) Physiol Genomics, 40, pp. 100-110
  • Ibanez, I.L., Bracalente, C., Notcovich, C., Tropper, I., Molinari, B.L., Policastro, L.L., Duran, H., Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells (2012) PLoS ONE, 7
  • (2011) A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing
  • Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Huber, W., Bioconductor: open software development for computational biology and bioinformatics (2004) Genome Biol, 5, p. R80
  • da Huang, W., Sherman, B.T., Lempicki, R.A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists (2009) Nucleic Acids Res, 37, pp. 1-13
  • da Huang, W., Sherman, B.T., Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources (2009) Nat Protoc, 4, pp. 44-57
  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Issel-Tarver, L., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium (2000) Nat Genet, 25, pp. 25-29
  • Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., Data, information, knowledge and principle: back to metabolism in KEGG (2014) Nucleic Acids Res, 42, pp. D199-205
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M., KEGG for integration and interpretation of large-scale molecular data sets (2012) Nucleic Acids Res, 40, pp. D109-114
  • Kanehisa, M., Goto, S., KEGG: kyoto encyclopedia of genes and genomes (2000) Nucleic Acids Res, 28, pp. 27-30
  • Lu, T., Finkel, T., Free radicals and senescence (2008) Exp Cell Res, 314, pp. 1918-1922
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J., Free radicals and antioxidants in normal physiological functions and human disease (2007) Int J Biochem Cell Biol, 39, pp. 44-84
  • Allen, R.G., Tresini, M., Oxidative stress and gene regulation (2000) Free Radic Biol Med, 28, pp. 463-499
  • Finkel, T., Signal transduction by reactive oxygen species (2011) J Cell Biol, 194, pp. 7-15
  • Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Montojo, J., The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function (2010) Nucleic Acids Res, 38, pp. W214-220
  • Hoek, K.S., Schlegel, N.C., Brafford, P., Sucker, A., Ugurel, S., Kumar, R., Weber, B.L., Dummer, R., Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature (2006) Pigment Cell Res, 19, pp. 290-302
  • Jaeger, J., Koczan, D., Thiesen, H.J., Ibrahim, S.M., Gross, G., Spang, R., Kunz, M., Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in lasermicrodissected melanoma tissues (2007) Clin Cancer Res, 13, pp. 806-815
  • Jeffs, A.R., Glover, A.C., Slobbe, L.J., Wang, L., He, S., Hazlett, J.A., Awasthi, A., Eccles, M.R., A gene expression signature of invasive potential in metastatic melanoma cells (2009) PLoS One, 4
  • Riker, A.I., Enkemann, S.A., Fodstad, O., Liu, S., Ren, S., Morris, C., Xi, Y., Eschrich, S., The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis (2008) BMC Med Genomics, 1, p. 13
  • Winnepenninckx, V., Lazar, V., Michiels, S., Dessen, P., Stas, M., Alonso, S.R., Avril, M.F., Sarasin, A., Gene expression profiling of primary cutaneous melanoma and clinical outcome (2006) J Natl Cancer Inst, 98, pp. 472-482
  • Smith, A.P., Hoek, K., Becker, D., Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas (2005) Cancer Biol Ther, 4, pp. 1018-1029
  • Talantov, D., Mazumder, A., Yu, J.X., Briggs, T., Jiang, Y., Backus, J., Atkins, D., Wang, Y., Novel genes associated with malignant melanoma but not benign melanocytic lesions (2005) Clin Cancer Res, 11, pp. 7234-7242
  • Mandruzzato, S., Callegaro, A., Turcatel, G., Francescato, S., Montesco, M.C., Chiarion-Sileni, V., Mocellin, S., Zanovello, P., A gene expression signature associated with survival in metastatic melanoma (2006) J Transl Med, 4, p. 50
  • John, T., Black, M.A., Toro, T.T., Leader, D., Gedye, C.A., Davis, I.D., Guilford, P.J., Cebon, J.S., Predicting clinical outcome through molecular profiling in stage III melanoma (2008) Clin Cancer Res, 14, pp. 5173-5180
  • Bogunovic, D., O'Neill, D.W., Belitskaya-Levy, I., Vacic, V., Yu, Y.L., Adams, S., Darvishian, F., Osman, I., Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival (2009) Proc Natl Acad Sci U S A, 106, pp. 20429-20434
  • Schramm, S.J., Mann, G.J., Melanoma prognosis: a REMARKbased systematic review and bioinformatic analysis of immunohistochemical and gene microarray studies (2011) Mol Cancer Ther, 10, pp. 1520-1528
  • Wang, L., Hurley, D.G., Watkins, W., Araki, H., Tamada, Y., Muthukaruppan, A., Ranjard, L., Print, C.G., Cell cycle gene networks are associated with melanoma prognosis (2012) PLoS ONE, 7
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 13, pp. 2498-2504

Citas:

---------- APA ----------
Bracalente, C., Ibañez, I.L., Berenstein, A., Notcovich, C., Cerda, M.B., Klamt, F., Chernomoretz, A.,..., Durán, H. (2016) . Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated. Oncotarget, 7(27), 41154-41171.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v7_n27_p41154_Bracalente [ ]
---------- CHICAGO ----------
Bracalente, C., Ibañez, I.L., Berenstein, A., Notcovich, C., Cerda, M.B., Klamt, F., et al. "Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated" . Oncotarget 7, no. 27 (2016) : 41154-41171.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v7_n27_p41154_Bracalente [ ]
---------- MLA ----------
Bracalente, C., Ibañez, I.L., Berenstein, A., Notcovich, C., Cerda, M.B., Klamt, F., et al. "Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated" . Oncotarget, vol. 7, no. 27, 2016, pp. 41154-41171.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v7_n27_p41154_Bracalente [ ]
---------- VANCOUVER ----------
Bracalente, C., Ibañez, I.L., Berenstein, A., Notcovich, C., Cerda, M.B., Klamt, F., et al. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated. Oncotarget. 2016;7(27):41154-41171.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v7_n27_p41154_Bracalente [ ]