Artículo

De Luca, P.; Dalton, G.N.; Scalise, G.D.; Moiola, C.P.; Porretti, J.; Massillo, C.; Kordon, E.; Gardner, K.; Zalazar, F.; Flumian, C.; Todaro, L.; Vazquez, E.S.; Meiss, R.; De Siervi, A. "CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs" (2016) Oncotarget. 7(14):18798-18811
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Metabolic syndrome (MeS) has been identified as a risk factor for breast cancer. C-terminal binding protein 1 (CtBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. High fat diet (HFD) increases intracellular NADH. We investigated the effect of CtBP1 hyperactivation by HFD intake on mouse breast carcinogenesis. We generated a MeS-like disease in female mice by chronically feeding animals with HFD. MeS increased postnatal mammary gland development and generated prominent duct patterns with markedly increased CtBP1 and Cyclin D1 expression. CtBP1 induced breast cancer cells proliferation. Serum from animals with MeS enriched the stem-like/progenitor cell population from breast cancer cells. CtBP1 increased breast tumor growth in MeS mice modulating multiple genes and miRNA expression implicated in cell proliferation, progenitor cells phenotype, epithelial to mesenchymal transition, mammary development and cell communication in the xenografts. These results define a novel function for CtBP1 in breast carcinogenesis.

Registro:

Documento: Artículo
Título:CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs
Autor:De Luca, P.; Dalton, G.N.; Scalise, G.D.; Moiola, C.P.; Porretti, J.; Massillo, C.; Kordon, E.; Gardner, K.; Zalazar, F.; Flumian, C.; Todaro, L.; Vazquez, E.S.; Meiss, R.; De Siervi, A.
Filiación:Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Buenos Aires, Argentina
National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
Área de Investigación del Instituto de Oncología A.H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN - CONICET, Buenos Aires, Argentina
Departamento de Patología, Instituto de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina
Palabras clave:Breast cancer; CtBP1; High fat diet; Metabolic syndrome; MiRNAs; binding protein; C terminal binding protein 1; cyclin D1; messenger RNA; microRNA; osteoprotegerin; receptor activator of nuclear factor kappa B; receptor interacting protein 140; short hairpin RNA; transcription factor Slug; transcription factor Snail; unclassified drug; vimentin; alcohol dehydrogenase; C-terminal binding protein; DNA binding protein; microRNA; animal experiment; animal model; animal tissue; Article; breast cancer cell line; breast carcinogenesis; cancer risk; cell communication; cell cycle arrest; cell proliferation; colony formation; controlled study; development; disease association; down regulation; epithelial mesenchymal transition; female; gene expression regulation; gene targeting; histopathology; hypercholesterolemia; hyperglycemia; lipid diet; mammary gland development; metabolic syndrome X; molecular dynamics; mouse; nonhuman; phenotype; postnatal development; protein expression; stem cell; tumor growth; tumor xenograft; upregulation; weight gain; 3T3 cell line; animal; breast tumor; genetics; human; MCF-7 cell line; metabolic syndrome X; metabolism; nude mouse; randomization; risk factor; xenograft; Alcohol Oxidoreductases; Animals; Breast Neoplasms; Diet, High-Fat; DNA-Binding Proteins; Female; Heterografts; Humans; MCF-7 Cells; Metabolic Syndrome X; Mice; Mice, Nude; MicroRNAs; NIH 3T3 Cells; Random Allocation; Risk Factors
Año:2016
Volumen:7
Número:14
Página de inicio:18798
Página de fin:18811
DOI: http://dx.doi.org/10.18632/oncotarget.7711
Título revista:Oncotarget
Título revista abreviado:Oncotarget
ISSN:19492553
CAS:osteoprotegerin, 205944-50-9; alcohol dehydrogenase, 9031-72-5; Alcohol Oxidoreductases; C-terminal binding protein; DNA-Binding Proteins; MicroRNAs
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19492553_v7_n14_p18798_DeLuca

Referencias:

  • Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., Jemal, A., Global cancer statistics, 2012 (2015) CA Cancer J Clin, 65, pp. 87-108
  • Czene, K., Lichtenstein, P., Hemminki, K., Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database (2002) Int J Cancer, 99, pp. 260-266
  • Willett, W.C., Balancing life-style and genomics research for disease prevention (2002) Science, 296, pp. 695-698
  • Kushi, L.H., Doyle, C., McCullough, M., Rock, C.L., Demark-Wahnefried, W., Bandera, E.V., Gapstur, S., Gansler, T., American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity (2012) CA Cancer J Clin, 62, pp. 30-67
  • Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report (2002) Circulation, 106, pp. 3143-3421
  • Harvie, M., Hooper, L., Howell, A.H., Central obesity and breast cancer risk: a systematic review (2003) Obes Rev, 4, pp. 157-173
  • Llaverias, G., Danilo, C., Mercier, I., Daumer, K., Capozza, F., Williams, T.M., Sotgia, F., Frank, P.G., Role of cholesterol in the development and progression of breast cancer (2011) Am J Pathol, 178, pp. 402-412
  • Reeves, G.K., Pirie, K., Beral, V., Green, J., Spencer, E., Bull, D., Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study (2007) BMJ, 335, p. 1134
  • Vona-Davis, L., Howard-McNatt, M., Rose, D.P., Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer (2007) Obes Rev, 8, pp. 395-408
  • Capasso, I., Esposito, E., Pentimalli, F., Crispo, A., Montella, M., Grimaldi, M., De Marco, M., D'Aiuto, G., Metabolic syndrome affects breast cancer risk in postmenopausal women: National Cancer Institute of Naples experience (2010) Cancer Biol Ther, 10, pp. 1240-1243
  • Esposito, K., Chiodini, P., Colao, A., Lenzi, A., Giugliano, D., Metabolic syndrome and risk of cancer: a systematic review and meta-analysis (2012) Diabetes Care, 35, pp. 2402-2411
  • Bhandari, R., Kelley, G.A., Hartley, T.A., Rockett, I.R., Metabolic syndrome is associated with increased breast cancer risk: a systematic review with meta-analysis (2014) Int J Breast Cancer, 2014
  • Moiola, C.P., De Luca, P., Zalazar, F., Cotignola, J., Rodriguez-Segui, S.A., Gardner, K., Meiss, R., De Siervi, A., Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice (2014) Clin Cancer Res, 20, pp. 4086-4095
  • Chinnadurai, G., Transcriptional regulation by C-terminal binding proteins (2007) Int J Biochem Cell Biol, 39, pp. 1593-1607
  • Fjeld, C.C., Birdsong, W.T., Goodman, R.H., Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor (2003) Proc Natl Acad Sci U S A, 100, pp. 9202-9207
  • Zhang, Q., Piston, D.W., Goodman, R.H., Regulation of corepressor function by nuclear NADH (2002) Science, 295, pp. 1895-1897
  • Di, L.J., Byun, J.S., Wong, M.M., Wakano, C., Taylor, T., Bilke, S., Baek, S., Raab, R., Genomewide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer (2013) Nat Commun, 4, p. 1449
  • Deng, Y., Deng, H., Liu, J., Han, G., Malkoski, S., Liu, B., Zhao, R., Zhang, Q., Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer (2012) Mol Carcinog, 51, pp. 500-507
  • Mittal, M.K., Singh, K., Misra, S., Chaudhuri, G., SLUGinduced elevation of D1 cyclin in breast cancer cells through the inhibition of its ubiquitination J Biol Chem, 286, pp. 469-479
  • Tripathi, M.K., Misra, S., Khedkar, S.V., Hamilton, N., Irvin-Wilson, C., Sharan, C., Sealy, L., Chaudhuri, G., Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells (2005) J Biol Chem, 280, pp. 17163-17171
  • Stossi, F., Madak-Erdogan, Z., Katzenellenbogen, B.S., Estrogen receptor alpha represses transcription of early target genes via p300 and CtBP1 (2009) Mol Cell Biol, 29, pp. 1749-1759
  • Choi, H.J., Lee, J.M., Kim, H., Nam, H.J., Shin, H.J., Kim, D., Ko, E., Baek, S.H., Bcl3-dependent stabilization of CtBP1 is crucial for the inhibition of apoptosis and tumor progression in breast cancer (2010) Biochem Biophys Res Commun, 400, pp. 396-402
  • Russo, J., Russo, I.H., Biological and molecular bases of mammary carcinogenesis (1987) Lab Invest, 57, pp. 112-137
  • Russo, J., Russo, I.H., Differentiation and breast cancer (1997) Medicina (B Aires), 57, pp. 81-91
  • Hilakivi-Clarke, L., Nutritional modulation of terminal end buds: its relevance to breast cancer prevention (2007) Curr Cancer Drug Targets, 7, pp. 465-474
  • Hiatt, R.A., Haslam, S.Z., Osuch, J., The breast cancer and the environment research centers: transdisciplinary research on the role of the environment in breast cancer etiology (2009) Environ Health Perspect, 117, pp. 1814-1822
  • Fenton, S.E., Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences (2006) Endocrinology, 147, pp. S18-S24
  • Olivo, S.E., Hilakivi-Clarke, L., Opposing effects of prepubertal low-and high-fat n-3 polyunsaturated fatty acid diets on rat mammary tumorigenesis (2005) Carcinogenesis, 26, pp. 1563-1572
  • Munoz-de-Toro, M., Markey, C.M., Wadia, P.R., Luque, E.H., Rubin, B.S., Sonnenschein, C., Soto, A.M., Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice (2005) Endocrinology, 146, pp. 4138-4147
  • Oza, A.M., Boyd, N.F., Mammographic parenchymal patterns: a marker of breast cancer risk (1993) Epidemiol Rev, 15, pp. 196-208
  • Wolfe, J.N., The prominent duct pattern as an indicator of cancer risk (1969) Oncology, 23, pp. 149-158
  • Chakravarthi, B.V., Pathi, S.S., Goswami, M.T., Cieslik, M., Zheng, H., Nallasivam, S., Arekapudi, S.R., Varambally, S., The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression (2014) Oncotarget, 5, pp. 6654-6669
  • Lakritz, J.R., Poutahidis, T., Mirabal, S., Varian, B.J., Levkovich, T., Ibrahim, Y.M., Ward, J.M., Erdman, S.E., Gut bacteria require neutrophils to promote mammary tumorigenesis (2015) Oncotarget, 6, pp. 9387-9396
  • Poutahidis, T., Kleinewietfeld, M., Smillie, C., Levkovich, T., Perrotta, A., Bhela, S., Varian, B.J., Erdman, S.E., Microbial reprogramming inhibits Western diet-associated obesity (2013) PLoS One, 8
  • de Assis, S., Warri, A., Cruz, M.I., Laja, O., Tian, Y., Zhang, B., Wang, Y., Hilakivi-Clarke, L., High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring (2012) Nat Commun, 3, p. 1053
  • Kallus, S.J., Brandt, L.J., The intestinal microbiota and obesity (2012) J Clin Gastroenterol, 46, pp. 16-24
  • Goedert, J.J., Jones, G., Hua, X., Xu, X., Yu, G., Flores, R., Falk, R.T., Feigelson, H.S., Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based casecontrol pilot study (2015) J Natl Cancer Inst, p. 107
  • Bumaschny, V., Urtreger, A., Diament, M., Krasnapolski, M., Fiszman, G., Klein, S., Joffe, E.B., Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model (2004) Breast Cancer Res, 6, pp. R116-R129
  • De Luca, P., Vazquez, E.S., Moiola, C.P., Zalazar, F., Cotignola, J., Gueron, G., Gardner, K., De Siervi, A., BRCA1 loss induces GADD153-mediated doxorubicin resistance in prostate cancer (2011) Mol Cancer Res, 9, pp. 1078-1090
  • Lahusen, T., De Siervi, A., Kunick, C., Senderowicz, A.M., Alsterpaullone, a novel cyclin-dependent kinase inhibitor, induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential (2003) Mol Carcinog, 36, pp. 183-194
  • Berardi, D.E., Flumian, C., Rodriguez, C.E., Diaz Bessone, M.I., Cirigliano, S.M., Bal de Kier Joffe, E.D., Fiszman, G.L., Todaro, L.B., PKCdelta Inhibition Impairs Mammary Cancer Proliferative Capacity But Selects Cancer Stem Cells, Involving Autophagy (2015) J Cell Biochem
  • Berardi, D.E., Flumian, C., Campodonico, P.B., Urtreger, A.J., Diaz Bessone, M.I., Motter, A.N., Bal de Kier Joffe, E.D., Todaro, L.B., Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid (2015) Cell Oncol (Dordr), 38, pp. 289-305
  • Kordon, E.C., Smith, G.H., An entire functional mammary gland may comprise the progeny from a single cell (1998) Development, 125, pp. 1921-1930

Citas:

---------- APA ----------
De Luca, P., Dalton, G.N., Scalise, G.D., Moiola, C.P., Porretti, J., Massillo, C., Kordon, E.,..., De Siervi, A. (2016) . CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs. Oncotarget, 7(14), 18798-18811.
http://dx.doi.org/10.18632/oncotarget.7711
---------- CHICAGO ----------
De Luca, P., Dalton, G.N., Scalise, G.D., Moiola, C.P., Porretti, J., Massillo, C., et al. "CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs" . Oncotarget 7, no. 14 (2016) : 18798-18811.
http://dx.doi.org/10.18632/oncotarget.7711
---------- MLA ----------
De Luca, P., Dalton, G.N., Scalise, G.D., Moiola, C.P., Porretti, J., Massillo, C., et al. "CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs" . Oncotarget, vol. 7, no. 14, 2016, pp. 18798-18811.
http://dx.doi.org/10.18632/oncotarget.7711
---------- VANCOUVER ----------
De Luca, P., Dalton, G.N., Scalise, G.D., Moiola, C.P., Porretti, J., Massillo, C., et al. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs. Oncotarget. 2016;7(14):18798-18811.
http://dx.doi.org/10.18632/oncotarget.7711