Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of nanoconfinement on the self-dissociation of water constitutes an open problem whose elucidation poses a serious challenge to experiments and simulations alike. In slit pores of width ?1 nm, recent first-principles calculations have predicted that the dissociation constant of H2O increases by almost 2 orders of magnitude [ Muñoz-Santiburcio and Marx, Phys. Rev. Lett. 2017, 119, 056002 ]. In the present study, quantum mechanics?molecular mechanics simulations are employed to compute the dissociation free-energy profile of water in a (6,6) carbon nanotube. According to our results, the equilibrium constant Kw drops by 3 orders of magnitude with respect to the bulk phase value, at variance with the trend predicted for confinement in two dimensions. The higher barrier to dissociation can be ascribed to the undercoordination of the hydroxide and hydronium ions in the nanotube and underscores that chemical reactivity does not exhibit a monotonic behavior with respect to pore size but may vary substantially with the characteristic length scale and dimensionality of the confining media. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes
Autor:Sirkin, Y.A.P.; Hassanali, A.; Scherlis, D.A.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, Trieste, I-34151, Italy
Palabras clave:Calculations; Carbon nanotubes; Equilibrium constants; Free energy; Molecular dynamics; Pore size; Yarn; Biased sampling; Characteristic length; Dissociation constant; First-principles calculation; Hydronium ions; Nanoconfinements; Orders of magnitude; Water dissociation; Dissociation
Año:2018
Volumen:9
Número:17
Página de inicio:5029
Página de fin:5033
DOI: http://dx.doi.org/10.1021/acs.jpclett.8b02183
Título revista:Journal of Physical Chemistry Letters
Título revista abreviado:J. Phys. Chem. Lett.
ISSN:19487185
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19487185_v9_n17_p5029_Sirkin

Referencias:

  • (2017) Phys. Rev. Lett., 119, p. 056002. , Muñoz-Santiburcio and Marx
  • Hummer, G., Rasaiah, J.C., Noworyta, J.P., Water conduction through the hydrophobic channel of a carbon nanotube (2001) Nature, 414, p. 188
  • Dellago, C., Naor, M.M., Hummer, G., Proton Transport through Water-Filled Carbon Nanotubes (2003) Phys. Rev. Lett., 90, p. 105902
  • Mann, D.J., Halls, M.D., Water Alignment and Proton Conduction inside Carbon Nanotubes (2003) Phys. Rev. Lett., 90, p. 195503
  • Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E., Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes (2003) Nano Lett., 3, pp. 589-592
  • Maniwa, Y., Matsuda, K., Kyakuno, H., Ogasawara, S., Hibi, T., Kadowaki, H., Suzuki, S., Kataura, H., Water-filled single-wall carbon nanotubes as molecular nanovalves (2007) Nat. Mater., 6, p. 135
  • Takaiwa, D., Hatano, I., Koga, K., Tanaka, H., Phase diagram of water in carbon nanotubes (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 39-43
  • Wang, L., Zhao, J., Li, F., Fang, H., Lu, J.P., First-Principles Study of Water Chains Encapsulated in Single-Walled Carbon Nanotube (2009) J. Phys. Chem. C, 113, pp. 5368-5375
  • Mikami, F., Matsuda, K., Kataura, H., Maniwa, Y., Dielectric Properties of Water inside Single-Walled Carbon Nanotubes (2009) ACS Nano, 3, pp. 1279-1287
  • Zuo, G., Shen, R., Guo, W., Self-Adjusted Sustaining Oscillation of Confined Water Chain in Carbon Nanotubes (2011) Nano Lett., 11, pp. 5297-5300
  • Cao, Z., Peng, Y., Yan, T., Li, S., Li, A., Voth, G.A., Mechanism of Fast Proton Transport along One-Dimensional Water Chains Confined in Carbon Nanotubes (2010) J. Am. Chem. Soc., 132, pp. 11395-11397
  • Lee, S.H., Rasaiah, J.C., Proton transfer and the diffusion of H+ and OH ions along water wires (2013) J. Chem. Phys., 139, p. 124507
  • Chen, J., Li, X.-Z., Zhang, Q., Michaelides, A., Wang, E., Nature of proton transport in a water-filled carbon nanotube and in liquid water (2013) Phys. Chem. Chem. Phys., 15, pp. 6344-6349
  • Li, S., Schmidt, B., Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes (2015) Phys. Chem. Chem. Phys., 17, pp. 7303-7316
  • Rossi, M., Ceriotti, M., Manolopoulos, D.E., Nuclear Quantum Effects in H+ and OH Diffusion along Confined Water Wires (2016) J. Phys. Chem. Lett., 7, pp. 3001-3007
  • Chen, Q., Wang, Q., Liu, Y.-C., Wu, T., The effect of hydrogen bonds on diffusion mechanism of water inside single-walled carbon nanotubes (2014) J. Chem. Phys., 140, p. 214507
  • Agrawal, K.V., Shimizu, S., Drahushuk, L.W., Kilcoyne, D., Strano, M.S., Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes (2017) Nat. Nanotechnol., 12, p. 267
  • Renou, R., Szymczyk, A., Maurin, G., Malfreyt, P., Ghoufi, A., Superpermittivity of nanoconfined water (2015) J. Chem. Phys., 142, p. 184706
  • Schaaf, C., Gekle, S., Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water (2016) J. Chem. Phys., 145, p. 084901
  • Agmon, N., The Grotthuss mechanism (1995) Chem. Phys. Lett., 244, pp. 456-462
  • Marx, D., Chandra, A., Tuckerman, M.E., Aqueous Basic Solutions: Hydroxide Solvation, Structural Diffusion, and Comparison to the Hydrated Proton (2010) Chem. Rev., 110, pp. 2174-2216
  • Knight, C., Voth, G.A., The Curious Case of the Hydrated Proton (2012) Acc. Chem. Res., 45, pp. 101-109
  • Hassanali, A., Giberti, F., Cuny, J., Kühne, T.D., Parrinello, M., Proton transfer through the water gossamer (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 13723
  • Muñoz-Santiburcio, D., Marx, D., Nanoconfinement in Slit Pores Enhances Water Self-Dissociation (2017) Phys. Rev. Lett., 119, p. 056002
  • Agmon, N., Bakker, H.J., Campen, R.K., Henchman, R.H., Pohl, P., Roke, S., Thämer, M., Hassanali, A., Protons and Hydroxide Ions in Aqueous Systems (2016) Chem. Rev., 116, pp. 7642-7672
  • Sprik, M., Computation of the pK of liquid water using coordination constraints (2000) Chem. Phys., 258, pp. 139-150
  • Hunt, D., Sanchez, V.M., Scherlis, D.A., A quantum-mechanics molecular-mechanics scheme for extended systems (2016) J. Phys.: Condens. Matter, 28, p. 335201
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Dabo, I., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials (2009) J. Phys.: Condens. Matter, 21, p. 395502
  • Munoz-Santiburcio, D., Marx, D., Chemistry in nanoconfined water (2017) Chem. Sci., 8, pp. 3444-3452
  • Tuckerman, M., Laasonen, K., Sprik, M., Parrinello, M., Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of H3O+ and OH- Ions in Water (1995) J. Phys. Chem., 99, pp. 5749-5752
  • Tuckerman, M., Laasonen, K., Sprik, M., Parrinello, M., Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water (1995) J. Chem. Phys., 103, pp. 150-161
  • Markovitch, O., Chen, H., Izvekov, S., Paesani, F., Voth, G.A., Agmon, N., Special Pair Dance and Partner Selection: Elementary Steps in Proton Transport in Liquid Water (2008) J. Phys. Chem. B, 112, pp. 9456-9466
  • Baer, M.D., Kuo, I.-F.W., Tobias, D.J., Mundy, C.J., Toward a Unified Picture of the Water Self-Ions at the AirWater Interface: A Density Functional Theory Perspective (2014) J. Phys. Chem. B, 118, pp. 8364-8372
  • Crespo, Y., Hassanali, A., Unveiling the Janus-Like Properties of OH (2015) J. Phys. Chem. Lett., 6, pp. 272-278
  • Egan, C.K., Paesani, F., Assessing Many-Body Effects of Water Self-Ions. I: OH(H2O)n Clusters (2018) J. Chem. Theory Comput., 14, pp. 1982-1997
  • Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, A., Janardanan, Q., Yang, Q., Geim, A.K., (2018) Science, 360, pp. 1339-1342

Citas:

---------- APA ----------
Sirkin, Y.A.P., Hassanali, A. & Scherlis, D.A. (2018) . One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes. Journal of Physical Chemistry Letters, 9(17), 5029-5033.
http://dx.doi.org/10.1021/acs.jpclett.8b02183
---------- CHICAGO ----------
Sirkin, Y.A.P., Hassanali, A., Scherlis, D.A. "One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes" . Journal of Physical Chemistry Letters 9, no. 17 (2018) : 5029-5033.
http://dx.doi.org/10.1021/acs.jpclett.8b02183
---------- MLA ----------
Sirkin, Y.A.P., Hassanali, A., Scherlis, D.A. "One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes" . Journal of Physical Chemistry Letters, vol. 9, no. 17, 2018, pp. 5029-5033.
http://dx.doi.org/10.1021/acs.jpclett.8b02183
---------- VANCOUVER ----------
Sirkin, Y.A.P., Hassanali, A., Scherlis, D.A. One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes. J. Phys. Chem. Lett. 2018;9(17):5029-5033.
http://dx.doi.org/10.1021/acs.jpclett.8b02183