Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This Letter investigates voltage-gated nanochannels, where both the potential applied to the conductive membrane containing the channel (membrane potential) and the potential difference between the solutions at both sides of the membrane (transmembrane potential) are independently controlled. The predicted conductance characteristics of these fixed-potential channels dramatically differ from those of the widely studied fixed-charge nanochannels, in which the membrane is insulating and has a fixed surface charge density. The difference arises because the transmembrane potential induces an inhomogeneous charge distribution on the surface of fixed-potential nanochannels. This behavior, related to bipolar electrochemistry, has some interesting and unexpected consequences for ion transport. For example, continuously oscillating the transmembrane potential, while holding the membrane potential at the potential for which it has zero charge in equilibrium, creates fluxes of neutral salt (fluxes of anions and cations in the same direction and number) through the channel, which is an interesting phenomenon for desalination applications. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Salt Pumping by Voltage-Gated Nanochannels
Autor:Tagliazucchi, M.; Szleifer, I.
Filiación:Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States
INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Palabras clave:bipolar diode; bipolar electrochemistry; desalinization; ion current; membrane; nanopore; Nernst-Planck; Bioelectric potentials; Desalination; Electrochemistry; Ions; Nanopores; Bipolar diodes; Bipolar electrochemistries; desalinization; Ion currents; Nernst-Planck; Membranes
Año:2015
Volumen:6
Número:18
Página de inicio:3534
Página de fin:3539
DOI: http://dx.doi.org/10.1021/acs.jpclett.5b01315
Título revista:Journal of Physical Chemistry Letters
Título revista abreviado:J. Phys. Chem. Lett.
ISSN:19487185
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19487185_v6_n18_p3534_Tagliazucchi

Referencias:

  • Tagliazucchi, M., Szleifer, I., Transport Mechanisms in Nanopores and Nanochannels: Can We Mimic Nature? (2015) Mater. Today, 18, pp. 131-142
  • Hou, X., Zhang, H.C., Jiang, L., Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification (2012) Angew. Chem., Int. Ed., 51, pp. 5296-5307
  • Soler-Illia, G.J.A.A., Azzaroni, O., Multifunctional Hybrids by Combining Ordered Mesoporous Materials and Macromolecular Building Blocks (2011) Chem. Soc. Rev., 40, pp. 1107-1150
  • Miller, S.A., Martin, C.R., Redox Modulation of Electroosmotic Flow in a Carbon Nanotube Membrane (2004) J. Am. Chem. Soc., 126, pp. 6226-6227
  • Buyukserin, F., Kohli, P., Wirtz, M.O., Martin, C.R., Electroactive Nanotube Membranes and Redox-Gating (2007) Small, 3, pp. 266-270
  • Nishizawa, M., Menon, V.P., Martin, C.R., Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity (1995) Science, 268, pp. 700-705
  • Kang, M.S., Martin, C.R., Investigations of Potential-Dependent Fluxes of Ionic Permeates in Gold Nanotubule Membranes Prepared Via the Template Method (2001) Langmuir, 17, pp. 2753-2759
  • Martin, C.R., Nishizawa, M., Jirage, K., Kang, M., Investigations of the Transport Properties of Gold Nanotubule Membranes (2001) J. Phys. Chem. B, 105, pp. 1925-1934
  • Majumder, M., Zhan, X., Andrews, R., Hinds, B.J., Voltage Gated Carbon Nanotube Membranes (2007) Langmuir, 23, pp. 8624-8631
  • Wu, J., Zhan, X., Hinds, B.J., Ionic Rectification by Electrostatically Actuated Tethers on Single Walled Carbon Nanotube Membranes (2012) Chem. Commun., 48, pp. 7979-7981
  • Gao, P., Martin, C.R., Voltage Charging Enhances Ionic Conductivity in Gold Nanotube Membranes (2014) ACS Nano, 8, pp. 8266-8272
  • Rutkowska, A., Freedman, K., Skalkowska, J., Kim, M.J., Edel, J.B., Albrecht, T., Electrodeposition and Bipolar Effects in Metallized Nanopores and Their Use in the Detection of Insulin (2015) Anal. Chem., 87, pp. 2337-2344
  • Karnik, R., Fan, R., Yue, M., Li, D., Yang, P., Majumdar, A., Electrostatic Control of Ions and Molecules in Nanofluidic Transistors (2005) Nano Lett., 5, pp. 943-948
  • Liu, Y., Huber, D.E., Dutton, R.W., Limiting and Overlimiting Conductance in Field-Effect Gated Nanopores (2010) Appl. Phys. Lett., 96, p. 253108
  • Liu, Y., Huber, D.E., Tabard-Cossa, V., Dutton, R.W., Descreening of Field Effect in Electrically Gated Nanopores (2010) Appl. Phys. Lett., 97, p. 143109
  • Boon, N., Olvera De La Cruz, M., 'Soft' Amplifier Circuits Based on Field-Effect Ionic Transistors (2015) Soft Matter, 11, pp. 4793-4798
  • Tagliazucchi, M., Calvo, E.J., Szleifer, I., Molecular Theory of Chemically Modified Electrodes by Redox Polyelectrolytes under Equilibrium Conditions: Comparison with Experiment (2008) J. Phys. Chem. C, 112, pp. 458-471
  • Hamelin, A., The Surface State and the Potential of Zero Charge of Gold (100): A Further Assessment (1995) J. Electroanal. Chem., 386, pp. 1-10
  • Ai, Y., Zhang, M., Joo, S.W., Cheney, M.A., Qian, S., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores (2010) J. Phys. Chem. C, 114, pp. 3883-3890
  • Corry, B., Kuyucak, S., Chung, S.H., Tests of Continuum Theories as Models of Ion Channels. II. Poisson-Nernst-Planck Theory Versus Brownian Dynamics (2000) Biophys. J., 78, pp. 2364-2381
  • Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods, , 2nd ed. John Wiley and Sons: New York
  • Vlassiouk, I., Smirnov, S., Siwy, Z., Ionic Selectivity of Single Nanochannels (2008) Nano Lett., 8, pp. 1978-1985
  • Schoch, R.B., Han, J., Renaud, P., Transport Phenomena in Nanofluidics (2008) Rev. Mod. Phys., 80, pp. 839-883
  • Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte Modified Nanopores (2011) J. Am. Chem. Soc., 133, pp. 17753-17763
  • Daiguji, H., Ion Transport in Nanofluidic Channels (2010) Chem. Soc. Rev., 39, pp. 901-911
  • Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., Mafé, S., Ion Transport and Selectivity in Nanopores with Spatially Inhomogeneous Fixed Charge Distributions (2007) J. Chem. Phys., 126, p. 194703
  • Stein, D., Kruithof, M., Dekker, C., Surface-Charge-Governed Ion Transport in Nanofluidic Channels (2004) Phys. Rev. Lett., 93, pp. 035901-35911
  • Goldman, D.E., Potential, Impedance and Rectification in Membranes (1943) J. Gen. Physiol., 27, pp. 37-60
  • Rice, C.L., Whitehead, R., Electrokinetic Flow in a Narrow Cylindrical Capillary (1965) J. Phys. Chem., 69, p. 4017
  • Tagliazucchi, M., Rabin, Y., Szleifer, I., Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes (2013) ACS Nano, 7, pp. 9085-9097
  • Daiguji, H., Oka, Y., Shirono, K., Nanofluidic Diode and Bipolar Transistor (2005) Nano Lett., 5, pp. 2274-2280
  • Vlassiouk, I., Smirnov, S., Siwy, Z., Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions (2008) ACS Nano, 2, pp. 1589-1602
  • Vlassiouk, I., Siwy, Z.S., Nanofluidic Diode (2007) Nano Lett., 7, pp. 552-556
  • Zangle, T.A., Mani, A., Santiago, J.G., Theory and Experiments of Concentration Polarization and Ion Focusing at Microchannel and Nanochannel Interfaces (2010) Chem. Soc. Rev., 39, pp. 1014-1035
  • Fosdick, S.E., Knust, K.N., Scida, K., Crooks, R.M., Bipolar Electrochemistry (2013) Angew. Chem., Int. Ed., 52, pp. 10438-10456
  • Siwy, Z., Fuliński, A., Fabrication of a Synthetic Nanopore Ion Pump (2002) Phys. Rev. Lett., 89, pp. 198103/1-198103/4
  • Ramirez, P., Gomez, V., Ali, M., Ensinger, W., Mafe, S., Net Currents Obtained from Zero-Average Potentials in Single Amphoteric Nanopores (2013) Electrochem. Commun., 31, pp. 137-140

Citas:

---------- APA ----------
Tagliazucchi, M. & Szleifer, I. (2015) . Salt Pumping by Voltage-Gated Nanochannels. Journal of Physical Chemistry Letters, 6(18), 3534-3539.
http://dx.doi.org/10.1021/acs.jpclett.5b01315
---------- CHICAGO ----------
Tagliazucchi, M., Szleifer, I. "Salt Pumping by Voltage-Gated Nanochannels" . Journal of Physical Chemistry Letters 6, no. 18 (2015) : 3534-3539.
http://dx.doi.org/10.1021/acs.jpclett.5b01315
---------- MLA ----------
Tagliazucchi, M., Szleifer, I. "Salt Pumping by Voltage-Gated Nanochannels" . Journal of Physical Chemistry Letters, vol. 6, no. 18, 2015, pp. 3534-3539.
http://dx.doi.org/10.1021/acs.jpclett.5b01315
---------- VANCOUVER ----------
Tagliazucchi, M., Szleifer, I. Salt Pumping by Voltage-Gated Nanochannels. J. Phys. Chem. Lett. 2015;6(18):3534-3539.
http://dx.doi.org/10.1021/acs.jpclett.5b01315