Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Using ring polymer molecular dynamics simulations, we examine equilibrium and dynamical characteristics of solid-like, aqueous clusters that combine isotopic mixtures of HDO dilute in H2O, at temperatures intermediate between 50 and 175 K. In particular, we focus attention on the relative thermodynamic stabilities of the two isotopes at dangling hydrogen bond sites. The water octamer is analyzed as a reference system. For this aggregate, decreasing temperature yields a gradual stabilization of the light isotope at dangling sites in molecules acting as single-donor-double-acceptors of hydrogen bonds. At T ∼ 50 K, the imbalance between the corresponding quantum kinetic energies leads to a free energy difference between dangling and hydrogen bonded sites of the order of ∼2kBT. Similar free energy differences were found at dangling sites in Nw = 50 water clusters. The extent of the H/D segregation can be adequately monitored by modifications in the peak intensity of the high frequency shoulder of the stretching band of the infrared spectrum. These signals, in turn, represent a potential experimental signature of the elusive temperature of clusters in molecular beams. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Surface isotope segregation as a probe of temperature in water nanoclusters
Autor:Videla, P.E.; Rossky, P.J.; Laria, D.
Filiación:Departamento de Quimica Inorganica Analitica y Quimica-Fisica e INQUIMAe, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
Department of Chemistry, University of Texas at Austin, Austin, TX 78712-0165, United States
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
Palabras clave:isotope effects; nuclear quantum fluctuations; path integrals; ring polymer molecular dynamics; Free energy; Hydrogen bonds; Molecular dynamics; Quantum electronics; Surface segregation; Dynamical characteristics; Free-energy difference; Isotope effect; Molecular dynamics simulations; Path integral; Quantum fluctuation; Ring polymers; Water nanoclusters; Isotopes
Año:2014
Volumen:5
Número:13
Página de inicio:2375
Página de fin:2379
DOI: http://dx.doi.org/10.1021/jz501043k
Título revista:Journal of Physical Chemistry Letters
Título revista abreviado:J. Phys. Chem. Lett.
ISSN:19487185
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19487185_v5_n13_p2375_Videla

Referencias:

  • Richmond, G.L., Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy (2002) Chemical Reviews, 102 (8), pp. 2693-2724. , DOI 10.1021/cr0006876
  • Gopalakrishnan, S., Liu, D., Allen, H.C., Kuo, M., Shultz, M.J., Vibrational spectroscopic studies of aqueous interfaces: Salts, acids, bases, and nanodrops (2006) Chemical Reviews, 106 (4), pp. 1155-1175. , DOI 10.1021/cr040361n
  • Shen, Y.R., Ostroverkhov, V., Sum-Frequency Vibrational Spectroscopy on Water Interfaces: Polar Orientaion of Water Molecules at Interfaces (2006) Chem. Rev., 106, pp. 1140-1154
  • McGuire, J.A., Shen, Y.R., Ultrafast vibrational dynamics at water interfaces (2006) Science, 313 (5795), pp. 1945-1948. , DOI 10.1126/science.1131536
  • Du, Q., Superfine, R., Freysz, E., Shen, Y.R., Vibrational Spectroscopy of Water at the Vapor/Water Interface (1993) Phys. Rev. Lett., 70, p. 2313
  • Gragson, D.E., Richmond, G.L., Investigations of the Structure and Hydrogen Bonding of Water Molecules at Liquid Surfaces by Vibrational Sum Frequency Spectroscopy (1998) J. Phys. Chem. B, 102, pp. 3847-3861
  • Shultz, M.J., Baldelli, S., Schnitzer, C., Simonelli, D., Aqueous solution/air interfaces probed with sum frequency generation spectroscopy (2002) Journal of Physical Chemistry B, 106 (21), pp. 5313-5324. , DOI 10.1021/jp014466v
  • Sovago, M., Campen, R.K., Wurpel, G.W., Muller, M., Bakker, H.J., Bonn, M., Vibrational Response of Hydrogen-Bonded Interfacial Water is Dominated by Intramolecular Coupling (2008) Phys. Rev. Lett., 100, p. 173901
  • Raymond, E.A., Tarbuck, T.L., Brown, M.G., Richmond, G.L., Hydrogen-Bonding Interactions at the Water/Vapor Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations (2003) J. Phys. Chem. B, 107, pp. 546-556
  • Raymond, E.A., Tarbuck, T.L., Richmond, G.L., Isotopic dilution studies of the vapor/water interface as investigated by vibrational sum-frequency spectroscopy (2002) Journal of Physical Chemistry B, 106 (11), pp. 2817-2820. , DOI 10.1021/jp013967d
  • Walker, D.S., Richmond, G.L., Understanding the effects of hydrogen bonding at the vapor-water interface: Vibrational sum frequency spectroscopy of H2O/HOD/D 2O mixtures studied using molecular dynamics simulations (2007) Journal of Physical Chemistry C, 111 (23), pp. 8321-8330. , DOI 10.1021/jp070493v
  • Wei, X., Miranda, P.B., Shen, Y.R., Surface Vibrational Spectroscopic Study of Surface Melting of Ice (2001) Phys. Rev. Lett., 86, p. 1554
  • Devlin, J.P., Preferential Deuterium Bonding at the Ice Surface: A Probe of Surface Water Molecule Mobility (2000) J. Chem. Phys., 112, p. 5527
  • Rowland, B., Fisher, M., Devlin, J.P., Probing Icy Surfaces with the Dangling-OH-mode Absortion: Large Ice Clusters and Microporous Amorphous Ice (1991) J. Chem. Phys., 95, p. 1378
  • Devlin, J.P., Buch, V., Surface of Ice As Viewed from Combined Spectroscopic and Computer Modeling Studies (1995) J. Phys. Chem., 99, pp. 16534-16548
  • Markland, T.E., Berne, B.J., Unraveling Quantum Mechanical Effects in Water Using Isotopic Fractionation (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 7988-7991
  • Liu, J., Andino, R.S., Miller, C.M., Chen, X., Wilkins, D.M., Ceriotti, M., Manolopoulos, D.E., A Surface-Specific Isotope Effect in Mixture of Light and Heavy Water (2013) J. Phys. Chem. C, 117, pp. 2944-2951
  • Nagata, Y., Pool, R.E., Backus, E.H.G., Bonn, M., Nuclear Quantum Effects Affect Bond Orientation of Water at the Water-Vapor Interface (2012) Phys. Rev. Lett., 109, p. 226101
  • Ayotte, P., Johnson, M.A., Electronic Absorption Spectra of Size-Selected Hydrated Electron Clusters: (HO2) n -, n = 6-50 (1997) J. Chem. Phys., 106, p. 811
  • Verlet, J.R.R., Bragg, A.E., Kammrath, A., Cheshnovsky, O., Neumark, D.M., Observation of large water-cluster anions with surface-bound excess electrons (2005) Science, 307 (5706), pp. 93-96. , DOI 10.1126/science.1106719
  • Kammrath, A., Verlet, J.R., Griffin, G.B., Neumark, D.M., Photoelectron Spectroscopy of Large (Water) n - (n = 50-200) Clusters at 4.7eV (2006) J. Chem. Phys., 125, p. 076101
  • Verlet, J.R., Bragg, A.E., Kammrath, A., Cheshnovsky, O., Neumark, D.M., Comment on Characterization of Excess Electrons in Water-Cluster Anions by Quantum Simulations (2005) Science, 310, p. 1769
  • Buck, U., Huisken, F., Infrared spectroscopy of size-selected water and methanol clusters (2000) Chemical Reviews, 100 (11), pp. 3863-3890. , DOI 10.1021/cr990054v
  • Richardson, J., Wales, D., Althorpe, S.C., McLaughlin, O., Shih, Saykally, R., Investigation of Terahertz Vibration-Rotation-Tunneling Spectra for the Water Octamer (2013) J. Phys. Chem. A, 117, pp. 6960-6966
  • Keutsch, F.N., Saykally, R.J., Water clusters: Untangling the mysteries of the liquid, one molecule at a time (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (19), pp. 10533-10540. , DOI 10.1073/pnas.191266498
  • Hewitt, A.J., Doss, N., Zobov, N.F., Polyansky, O.L., Tennyson, J., Deuterated water: Partition functions and equilibrium constants (2005) Monthly Notices of the Royal Astronomical Society, 356 (3), pp. 1123-1126. , DOI 10.1111/j.1365-2966.2004.08559.x
  • Habershon, S., Manolopoulos, D.E., Markland, T.E., Miller III, T.F., Ring-Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Space (2013) Annu. Rev. Phys. Chem., 64, pp. 387-413
  • Tuckerman, M.E., (2010) Statistical Mechanics: Theory and Molecular Simulation, , See, for example, Oxford University Press: Oxford, U. K. Ch. 10
  • Videla, P.E., Rossky, P.J., Laria, D., Nuclear Quantum Effects on the Structure and the Dynamics of [H 2O]8 at Low Temperatures (2013) J. Chem. Phys., 139, p. 174315
  • Habershon, S., Markland, T.E., Manolopoulos, D.E., Competing Quantum Effects in the Dynamics of a Flexible Water Model (2009) J. Chem. Phys., 131, p. 024501
  • Buck, U., Ettischer, I., Melzer, M., Buch, V., Sadlej, J., Structure and Spectra of Three-Dimensional (H2O)n Clusters, n = 8, 9, 10 (1998) Phys. Rev. Lett., 80, p. 2578
  • Vanicek, J., Miller, W.H., Efficient Estimators for Quantum Instanton Evaluation of the Kinetic Isotope Effects: Application to the Intramolecular Hydrogen Transfer in Pentadiene (2007) J. Chem. Phys., 127, p. 114309
  • Ceriotti, M., Markland, D.E., Efficient Methods and Practical Guidelines for Simulating Isotope Effects (2013) J. Chem. Phys., 138, p. 14112
  • Sugita, Y., Okamoto, Y., Replica-Exchange Molecular Dynamics Method for Protein Folding (1999) Chem. Phys. Lett., 314, p. 141
  • Zhang, W., Wu, C., Convergence of Replica Exchange Molecular Dynamics (2005) J. Chem. Phys., 123, p. 154105
  • Earl, D.J., Deem, M.W., Parallel tempering: Theory, applications, and new perspectives (2005) Physical Chemistry Chemical Physics, 7 (23), pp. 3910-3916. , DOI 10.1039/b509983h

Citas:

---------- APA ----------
Videla, P.E., Rossky, P.J. & Laria, D. (2014) . Surface isotope segregation as a probe of temperature in water nanoclusters. Journal of Physical Chemistry Letters, 5(13), 2375-2379.
http://dx.doi.org/10.1021/jz501043k
---------- CHICAGO ----------
Videla, P.E., Rossky, P.J., Laria, D. "Surface isotope segregation as a probe of temperature in water nanoclusters" . Journal of Physical Chemistry Letters 5, no. 13 (2014) : 2375-2379.
http://dx.doi.org/10.1021/jz501043k
---------- MLA ----------
Videla, P.E., Rossky, P.J., Laria, D. "Surface isotope segregation as a probe of temperature in water nanoclusters" . Journal of Physical Chemistry Letters, vol. 5, no. 13, 2014, pp. 2375-2379.
http://dx.doi.org/10.1021/jz501043k
---------- VANCOUVER ----------
Videla, P.E., Rossky, P.J., Laria, D. Surface isotope segregation as a probe of temperature in water nanoclusters. J. Phys. Chem. Lett. 2014;5(13):2375-2379.
http://dx.doi.org/10.1021/jz501043k