Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. We investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell wall integrity (CWI) response. Although the PR MAPK pathway shares components with a third MAPK pathway, the high osmolarity (HOG) response, each one is normally only activated by its cognate stimulus, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity-dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the "shmooing" morphogenetic process. Activation required the polarisome, the CWI MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover, which improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to fine-tune yeast response in a complex environment.

Registro:

Documento: Artículo
Título:Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway
Autor:Baltanás, R.; Bush, A.; Couto, A.; Durrieu, L.; Hohmann, S.; Colman-Lerner, A.
Filiación:Instituto de Fisiología, Biología Molecular Y Neurociencias, Departamento de Fisiología, Biología Molecular Y Celular, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
CIHIDECAR-Departamento de Química Orgánica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg 413 90, Sweden
Palabras clave:glycerol; mitogen activated protein kinase; mitogen activated protein kinase kinase 1; pheromone; protein; protein Slt2; unclassified drug; adaptation; article; cell structure; cell wall; cellular stress response; controlled study; homeostasis; hyperosmotic stress; morphogenesis; negative feedback; nonhuman; osmoadaptation; osmolarity; priority journal; steady state; turnover time; yeast cell; Cell Wall; MAP Kinase Signaling System; Membrane Proteins; Mitogen-Activated Protein Kinases; Osmosis; Pheromones; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins
Año:2013
Volumen:6
Número:272
DOI: http://dx.doi.org/10.1126/scisignal.2003312
Título revista:Science Signaling
Título revista abreviado:Sci. Signal.
ISSN:19450877
CAS:glycerol, 56-81-5; mitogen activated protein kinase, 142243-02-5; protein, 67254-75-5; FPS1 protein, S cerevisiae; Membrane Proteins; Mitogen-Activated Protein Kinases, 2.7.11.24; Pheromones; SLT2 protein, S cerevisiae, 2.7.11.24; Saccharomyces cerevisiae Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19450877_v6_n272_p_Baltanas

Referencias:

  • Hohmann, S., Osmotic stress signaling and osmoadaptation in yeasts (2002) Microbiol. Mol. Biol. Rev., 66, pp. 300-372
  • Levin, D.E., Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway (2011) Genetics, 189, pp. 1145-1175
  • Dohlman, H.G., Thorner, J.W., Regulation of G protein-initiated signal transduction in yeast: Paradigms and principles (2001) Annu. Rev. Biochem., 70, pp. 703-754
  • Madhani, H.D., Fink, G.R., The control of filamentous differentiation and virulence in fungi (1998) Trends Cell Biol., 8, pp. 348-353
  • Roberts, C.J., Nelson, B., Marton, M.J., Stoughton, R., Meyer, M.R., Bennett, H.A., He, Y.D., Friend, S.H., Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles (2000) Science, 287, pp. 873-880
  • Chenevert, J., Valtz, N., Herskowitz, I., Identification of genes required for normal pheromone-induced cell polarization in Saccharomyces cerevisiae (1994) Genetics, 136, pp. 1287-1296
  • Errede, B., Cade, R.M., Yashar, B.M., Kamada, Y., Levin, D.E., Irie, K., Matsumoto, K., Dynamics and organization of MAP kinase signal pathways (1995) Mol. Reprod. Dev., 42, pp. 477-485
  • Buehrer, B.M., Errede, B., Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae (1997) Mol. Cell. Biol., 17, pp. 6517-6525
  • Zarzov, P., Mazzoni, C., Mann, C., The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast (1996) EMBO J., 15, pp. 83-91
  • Sutherland, F.C., Lages, F., Lucas, C., Luyten, K., Albertyn, J., Hohmann, S., Prior, B.A., Kilian, S.G., Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae (1997) J. Bacteriol., 179, pp. 7790-7795
  • De Nadal, E., Ammerer, G., Posas, F., Controlling gene expression in response to stress (2011) Nat. Rev. Genet., 12, pp. 833-845
  • Yamamoto, K., Tatebayashi, K., Tanaka, K., Saito, H., Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor (2010) Mol. Cell, 40, pp. 87-98
  • Posas, F., Saito, H., Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator (1998) EMBO J., 17, pp. 1385-1394
  • Ferrigno, P., Posas, F., Koepp, D., Saito, H., Silver, P.A., Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1 (1998) EMBO J., 17, pp. 5606-5614
  • O'Rourke, S.M., Herskowitz, I., Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis (2004) Mol. Biol. Cell, 15, pp. 532-542
  • Luyten, K., Albertyn, J., Skibbe, W.F., Prior, B.A., Ramos, J., Thevelein, J.M., Hohmann, S., Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress (1995) EMBO J., 14, pp. 1360-1371
  • Beese, S.E., Negishi, T., Levin, D.E., Identification of positive regulators of the yeast fps1 glycerol channel (2009) PLoS Genet., 5, pp. e1000738
  • Moore, S.A., α-Factor inhibition of the rate of cell passage through the "start" step of cell division in Saccharomyces cerevisiae yeast: Estimation of the division delay per α-factor receptor complex (1987) Exp. Cell Res., 171, pp. 411-425
  • Muzzey, D., Gómez-Uribe, C.A., Mettetal, J.T., Van Oudenaarden, A., A systems-level analysis of perfect adaptation in yeast osmoregulation (2009) Cell, 138, pp. 160-171
  • Miermont, A., Uhlendorf, J., McClean, M., Hersen, P., The dynamical systems properties of the HOG signaling cascade (2011) J. Signal Transduct., 2011, p. 930940
  • Oliveira, R., Lucas, C., Expression studies of GUP1 and GUP2, genes involved in glycerol active transport in Saccharomyces cerevisiae, using semi-quantitative RT-PCR (2004) Curr. Genet., 46, pp. 140-146
  • Posas, F., Saito, H., Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: Scaffold role of Pbs2p MAPKK (1997) Science, 276, pp. 1702-1705
  • O'Rourke, S.M., Herskowitz, I., The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae (1998) Genes Dev., 12, pp. 2874-2886
  • Patterson, J.C., Klimenko, E.S., Thorner, J., Single-cell analysis reveals that insulation maintains signaling specificity between two yeast MAPK pathways with common components (2010) Sci. Signal., 3, pp. ra75
  • Westfall, P.J., Patterson, J.C., Chen, R.E., Thorner, J., Stress resistance and signal fidelity independent of nuclear MAPK function (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 12212-12217
  • Heiman, M.G., Walter, P., Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating (2000) J. Cell Biol., 151, pp. 719-730
  • Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., Brent, R., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437, pp. 699-706
  • Gordon, A., Colman-Lerner, A., Chin, T.E., Benjamin, K.R., Yu, R.C., Brent, R., Single-cell quantification of molecules and rates using open-source microscope-based cytometry (2007) Nat. Methods, 4, pp. 175-181
  • Chernomoretz, A., Bush, A., Yu, R., Gordon, A., Colman-Lerner, A., Using Cell-ID 1.4 with R for microscope-based cytometry (2008) Curr. Protoc. Mol. Biol., , Chapter 14, Unit 14.18
  • Karlgren, S., Pettersson, N., Nordlander, B., Mathai, J.C., Brodsky, J.L., Zeidel, M.L., Bill, R.M., Hohmann, S., Conditional osmotic stress in yeast: A system to study transport through aquaglyceroporins and osmostress signaling (2005) J. Biol. Chem., 280, pp. 7186-7193
  • Nagiec, M.J., Dohlman, H.G., Checkpoints in a yeast differentiation pathway coordinate signaling during hyperosmotic stress (2012) PLoS Genet., 8, pp. e1002437
  • Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., Cluster analysis and display of genome-wide expression patterns (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 14863-14868
  • Moore, S.A., Comparison of dose-response curves for a factor-induced cell division arrest, agglutination, and projection formation of yeast cells. Implication for the mechanism of a factor action (1983) J. Biol. Chem., 258, pp. 13849-13856
  • Dorer, R., Pryciak, P.M., Hartwell, L.H., Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients (1995) J. Cell Biol., 131, pp. 845-861
  • Van Drogen, F., Peter, M., Spa2p functions as a scaffold-like protein to recruit the Mpk1p MAP kinase module to sites of polarized growth (2002) Curr. Biol., 12, pp. 1698-1703
  • Philips, J., Herskowitz, I., Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae (1997) J. Cell Biol., 138, pp. 961-974
  • Alon, U., (2006) An Introduction to Systems Biology: Design Principles of Biological Circuits, , Chapman & Hall, Boca Raton, FL
  • McClean, M.N., Mody, A., Broach, J.R., Ramanathan, S., Cross-talk and decision making in MAP kinase pathways (2007) Nat. Genet., 39, pp. 409-414
  • Zhang, N.N., Dudgeon, D.D., Paliwal, S., Levchenko, A., Grote, E., Cunningham, K.W., Multiple signaling pathways regulate yeast cell death during the response to mating pheromones (2006) Mol. Biol. Cell, 17, pp. 3409-3422
  • Tamas, M.J., Luyten, K., Sutherland, F.C., Hernandez, A., Albertyn, J., Valadi, H., Li, H., Hohmann, S., Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation (1999) Mol. Microbiol., 31, pp. 1087-1104
  • Rodriguez-Peña, J.M., Garcia, R., Nombela, C., Arroyo, J., The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: A yeast dialogue between MAPK routes (2010) Yeast, 27, pp. 495-502
  • Rep, M., Albertyn, J., Thevelein, J.M., Prior, B.A., Hohmann, S., Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae (1999) Microbiology, 145 (PART 3), pp. 715-727
  • Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., Hohmann, S., Integrative model of the response of yeast to osmotic shock (2005) Nat. Biotechnol., 23, pp. 975-982
  • Pelet, S., Rudolf, F., Nadal-Ribelles, M., De Nadal, E., Posas, F., Peter, M., Transient activation of the HOG MAPK pathway regulates bimodal gene expression (2011) Science, 332, pp. 732-735
  • Wendland, B.E., Arbus, G.S., Oral fluid therapy: Sodium and potassium content and osmolality of some commercial "clear" soups, juices and beverages (1979) Can. Med. Assoc. J., 121, pp. 564-566+568+571
  • Streuli, C.H., Akhtar, N., Signal co-operation between integrins and other receptor systems (2009) Biochem. J., 418, pp. 491-506
  • Bill, H.M., Knudsen, B., Moores, S.L., Muthuswamy, S.K., Rao, V.R., Brugge, J.S., Miranti, C.K., Epidermal growth factor receptor-dependent regulation of integrinmediated signaling and cell cycle entry in epithelial cells (2004) Mol. Cell. Biol., 24, pp. 8586-8599
  • Butcher, D.T., Alliston, T., Weaver, V.M., A tense situation: Forcing tumour progression (2009) Nat. Rev. Cancer, 9, pp. 108-122
  • Xu, R., Boudreau, A., Bissell, M.J., Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices (2009) Cancer Metastasis Rev., 28, pp. 167-176
  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Current Protocols in Molecular Biology, pp. 1987-2006. , F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl, Eds. John Wiley and Sons Inc., New York
  • Guthrie, C., Fink, G.R., (1991) Methods in Enzymology: Guide to Yeast Genetics and Molecular Biology, , C. Guthrie, G. R. Fink, Eds. Academic Press, San Diego, CA
  • Sikorski, R.S., Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae (1989) Genetics, 122, pp. 19-27
  • Yu, R.C., Pesce, C.G., Colman-Lerner, A., Lok, L., Pincus, D., Serra, E., Holl, M., Brent, R., Negative feedback that improves information transmission in yeast signalling (2008) Nature, 456, pp. 755-761
  • Cleveland, W.S., Grosse, E., Shyu, W.M., (1992) Statistical Models in S, , J. M. Chambers, T. J. Hastie, Eds. Wadsworth and Brooks/Cole, Pacific Grove, CA
  • Schaber, J., Baltanas, R., Bush, A., Klipp, E., Colman-Lerner, A., Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast (2012) Mol. Syst. Biol., 8, p. 622
  • Tarocco, F., Lecuona, R.E., Couto, A.S., Arcas, J.A., Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology (2005) Appl. Microbiol. Biotechnol., 68, pp. 481-488
  • Pinheiro, J.C., Bates, D.M., (2000) Mixed-Effects Models in S and S-PLUS, , Springer Verlag, New York
  • Ma, W., Trusina, A., El-Samad, H., Lim, W.A., Tang, C., Defining network topologies that can achieve biochemical adaptation (2009) Cell, 138, pp. 760-773

Citas:

---------- APA ----------
Baltanás, R., Bush, A., Couto, A., Durrieu, L., Hohmann, S. & Colman-Lerner, A. (2013) . Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway. Science Signaling, 6(272).
http://dx.doi.org/10.1126/scisignal.2003312
---------- CHICAGO ----------
Baltanás, R., Bush, A., Couto, A., Durrieu, L., Hohmann, S., Colman-Lerner, A. "Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway" . Science Signaling 6, no. 272 (2013).
http://dx.doi.org/10.1126/scisignal.2003312
---------- MLA ----------
Baltanás, R., Bush, A., Couto, A., Durrieu, L., Hohmann, S., Colman-Lerner, A. "Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway" . Science Signaling, vol. 6, no. 272, 2013.
http://dx.doi.org/10.1126/scisignal.2003312
---------- VANCOUVER ----------
Baltanás, R., Bush, A., Couto, A., Durrieu, L., Hohmann, S., Colman-Lerner, A. Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway. Sci. Signal. 2013;6(272).
http://dx.doi.org/10.1126/scisignal.2003312