Artículo

Jiang, P.; Ventura, A.C.; Sontag, E.D.; Merajver, S.D.; Ninfa, A.J.; Del Vecchio, D. "Load-induced modulation of signal transduction networks" (2011) Science Signaling. 4(194)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Biological signal transduction networks are commonly viewed as circuits that pass along information - in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks - to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitivechanges in response dynamics occurred for a covalent modification cycle when load was present.Loading altered the response time of a system, depending on whether the activity of one of the enzymeswas maximal and the other was operating at its minimal rate or whether both enzymes were operating atsubmaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," wereassociated with increased or decreased response times, respectively. The bandwidth, the range of frequencyin which the system can process information, decreased in the presence of load, suggesting thatdownstream targets participate in establishing a balance between noise-filtering capabilities and a circuit'sability to process high-frequency stimulation. Nodes in a signaling network are not independentrelay devices, but rather are modulated by their downstream targets.

Registro:

Documento: Artículo
Título:Load-induced modulation of signal transduction networks
Autor:Jiang, P.; Ventura, A.C.; Sontag, E.D.; Merajver, S.D.; Ninfa, A.J.; Del Vecchio, D.
Filiación:Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, United States
Institute for Physiology, Molecular Biology, and Neuroscience, Department of Biology, Universidad de Buenos Aires, Pabellón 2, Buenos Aires C1428EHA, Argentina
Department of Mathematics, Rutgers University, New Brunswick, NJ 08854-8019, United States
Department of Internal Medicine, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
Palabras clave:article; enzyme activity; information processing; mathematical model; modulation; priority journal; signal processing; signal transduction; allosterism; biological model; Escherichia coli; feedback system; metabolism; physiology; systems biology; time; enzyme; nitrogen regulatory protein; nucleotidyltransferase; regulatory protein uridylyltransferase; Allosteric Regulation; Enzymes; Escherichia coli; Feedback, Physiological; Models, Biological; Nucleotidyltransferases; PII Nitrogen Regulatory Proteins; Signal Transduction; Systems Biology; Time Factors
Año:2011
Volumen:4
Número:194
DOI: http://dx.doi.org/10.1126/scisignal.2002152
Título revista:Science Signaling
Título revista abreviado:Sci. Signal.
ISSN:19450877
CAS:nucleotidyltransferase, 9031-50-9; Enzymes; Nucleotidyltransferases, 2.7.7.-; PII Nitrogen Regulatory Proteins; regulatory protein uridylyltransferase, 2.7.7.59
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19450877_v4_n194_p_Jiang

Referencias:

  • Alon, U., Biological networks: The tinkerer as an engineer (2003) Science, 301, pp. 1866-1867
  • Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W., From molecular to modular cell biology (1999) Nature, 402, pp. C47-C52
  • Alexander, R.P., Kim, P.M., Emonet, T., Gerstein, M.B., Understanding modularity in molecular networks requires dynamics (2009) Sci. Signal., 2, pp. 1-4
  • Dunlap, J.C., Molecular bases for circadian clocks (1999) Cell, 96, pp. 271-290
  • Laub, M.T., McAdams, H.H., Feldblyum, T., Fraser, C.M., Shapiro, L., Global analysis of the genetic network controlling a bacterial cell cycle (2000) Science, 290, pp. 2144-2148
  • Nishikawa, T., Gulbahce, N., Motter, A.E., Spontaneous reaction silencing in metabolic optimization (2008) PloS Comput. Biol., 4, pp. e1000236
  • Marshall, C.J., Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation (1995) Cell, 80, pp. 179-185
  • Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D., The IkB-NF-kB signaling module: Temporal control and selective gene activation (2002) Science, 298, pp. 1241-1245
  • Blume-Jensen, P., Hunter, T., Oncogenic kinase signalling (2001) Nature, 411, pp. 355-365
  • Del Vecchio, D., Ninfa, A.J., Sontag, E.D., Modular cell biology: Retroactivity and insulation (2008) Mol. Syst. Biol., 4, p. 161
  • Ventura, A.C., Sepulchre, J.-A., Merajver, S.D., A hidden feedback in signaling cascades is revealed (2008) PLoS Comput. Biol., 4, pp. e1000041
  • Saez-Rodriguez, J., Kremling, A., Gilles, E.D., Dissecting the puzzle of life: Modularization of signal transduction networks (2005) Comput. Chem. Eng., 29, pp. 619-629
  • Sauro, H.M., Kholodenko, B.N., Quantitative analysis of signaling networks (2004) Prog. Biophys. Mol. Biol., 86, pp. 5-43
  • Markevich, N.I., Hoek, J.B., Kholodenko, B.N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades (2004) J. Cell Biol., 164, pp. 353-359
  • Blüthgen, N., Bruggeman, F.J., Legewie, S., Herzel, H., Westerhoff, H.V., Kholodenko, B.N., Effects of sequestration on signal transduction cascades (2006) FEBS J., 273, pp. 895-906
  • Ortega, F., Acerenza, L., Westerhoff, H.V., Mas, F., Cascante, M., Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 1170-1175
  • Jayanthi, S., Del Vecchio, D., On the compromise between retroactivity attenuation and noise amplification in gene regulatory networks (2009) Proc. IEEE Conf. on Decision and Control, pp. 4565-4571
  • Kim, K.H., Sauro, H.M., Fan-out in gene regulatory networks (2010) J. Biol. Eng., 4, p. 16
  • Ventura, A.C., Jiang, P., Van Wassenhove, L., Del Vecchio, D., Merajver, S.D., Ninfa, A.J., Signaling properties of a covalent modification cycle are altered by a downstream target (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 10032-10037
  • Ninfa, A.J., Jiang, P., Atkinson, M.R., Peliska, J.A., Integration of antagonistic signal in the regulation of nitrogen assimilation in Escherichia coli (2000) Curr. Top. Cell. Regul., 36, pp. 31-75
  • Goldbeter, A., Koshland Jr., D.E., An amplified sensitivity arising from covalent modification in biological systems (1981) Proc. Natl. Acad. Sci. U.S.A., 78, pp. 6840-6844
  • Mettetal, J.T., Muzzey, D., Gómez-Uribe, C., Van Oudenaarden, A., The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae (2008) Science, 319, pp. 482-484
  • Behar, M., Dohlman, H.G., Elston, T.C., Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 16146-16151
  • Hersen, P., McClean, M.N., Mahadevan, L., Ramanathan, S., Signal processing by the HOG MAP kinase pathway (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 7165-7170
  • Kholodenko, B.N., Hancock, J.F., Kolch, W., Signalling ballet in space and time (2010) Nat. Rev. Mol. Cell Biol., 11, pp. 414-426
  • Jiang, P., Ninfa, A.J., Sensation and signaling of α-ketoglutarate and adenylylate energy charge by the Escherichia coli PII signal transduction protein require cooperation of the three ligand-binding sites within the PII trimer (2009) Biochemistry, 48, pp. 11522-11531
  • Jiang, P., Ninfa, A.J., Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylylate energy charge in vitro (2007) Biochemistry, 46, pp. 12979-12996
  • Ninfa, A.J., Jiang, P., PII signal transduction proteins: Sensors of α-ketoglutarate that regulate nitrogen metabolism (2005) Curr. Opin. Microbiol., 8, pp. 168-173
  • Huang, C.Y., Ferrell Jr., J.E., Ultrasensitivity in the mitogen-activated protein kinase cascade (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 10078-10083
  • Kim, Y., Coppey, M., Grossman, R., Ajuria, L., Jiménez, G., Paroush, Z., Shvartsman, S.Y., MAPK substrate competition integrates pattern signals in the Drosophila embryo (2010) Curr. Biol., 20, pp. 446-451
  • Kim, Y., Paroush, Z., Nairz, K., Hafen, E., Jiménez, G., Shvartsman, S.Y., Substrate-dependent control of MAPK phosphorylation in vivo (2011) Mol. Syst. Biol., 7, p. 467
  • Jiang, P., Peliska, J.A., Ninfa, A.J., Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli (1998) Biochemistry, 37, pp. 12795-12801
  • Gomez-Uribe, C., Verghese, G.C., Mirny, L.A., Operating regimes of signaling cycles: Statics, dynamics, and noise filtering (2007) PLoS Comput. Biol., 3, pp. e246
  • Jayanthi, S., Del Vecchio, D., Retroactivity attenuation in bio-molecular systems based on timescale separation (2010) IEEE Trans. Aut. Control, 56, pp. 748-761
  • Behar, M., Dohlman, H.G., Elston, T.C., Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 16146-16151
  • Zhu, J., Burgner, J.W., Harms, E., Belitsky, B.R., Smith, J.L., A new arrangement of (β/α) 8 barrels in the synthase subunit of PLP synthase (2005) J. Biol. Chem., 280, pp. 27914-27923

Citas:

---------- APA ----------
Jiang, P., Ventura, A.C., Sontag, E.D., Merajver, S.D., Ninfa, A.J. & Del Vecchio, D. (2011) . Load-induced modulation of signal transduction networks. Science Signaling, 4(194).
http://dx.doi.org/10.1126/scisignal.2002152
---------- CHICAGO ----------
Jiang, P., Ventura, A.C., Sontag, E.D., Merajver, S.D., Ninfa, A.J., Del Vecchio, D. "Load-induced modulation of signal transduction networks" . Science Signaling 4, no. 194 (2011).
http://dx.doi.org/10.1126/scisignal.2002152
---------- MLA ----------
Jiang, P., Ventura, A.C., Sontag, E.D., Merajver, S.D., Ninfa, A.J., Del Vecchio, D. "Load-induced modulation of signal transduction networks" . Science Signaling, vol. 4, no. 194, 2011.
http://dx.doi.org/10.1126/scisignal.2002152
---------- VANCOUVER ----------
Jiang, P., Ventura, A.C., Sontag, E.D., Merajver, S.D., Ninfa, A.J., Del Vecchio, D. Load-induced modulation of signal transduction networks. Sci. Signal. 2011;4(194).
http://dx.doi.org/10.1126/scisignal.2002152