Artículo

Bodenmiller, B.; Wanka, S.; Kraft, C.; Urban, J.; Campbell, D.; Pedrioli, P.G.; Gerrits, B.; Picotti, P.; Lam, H.; Vitek, O.; Brusniak, M.-Y.; Roschitzki, B.; Zhang, C.; Shokat, K.M.; Schlapbach, R.; Colman-Lerner, A.; Nolan, G.P.; Nesvizhskii, A.I. (...) Aebersold, R. "Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast" (2010) Science Signaling. 3(153)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules, and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequencesand is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery, and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis. © 2008 American Association for the Advancement of Science.

Registro:

Documento: Artículo
Título:Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast
Autor:Bodenmiller, B.; Wanka, S.; Kraft, C.; Urban, J.; Campbell, D.; Pedrioli, P.G.; Gerrits, B.; Picotti, P.; Lam, H.; Vitek, O.; Brusniak, M.-Y.; Roschitzki, B.; Zhang, C.; Shokat, K.M.; Schlapbach, R.; Colman-Lerner, A.; Nolan, G.P.; Nesvizhskii, A.I.; Peter, M.; Loewith, R.; Mering, C.V.; Aebersold, R.
Filiación:Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
Zurich PhD Program in Molecular Life Sciences, 8057 Zurich, Switzerland
Institute of Molecular Life Sciences, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
Institute for Systems Biology, Seattle, WA 98103, United States
Functional Genomics Center Zurich, University Zurich and ETH Zurich, 8057 Zurich, Switzerland
Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Hong Kong
Departments of Statistics and Computer Science, Purdue University, West Lafayette, IN 47107, United States
Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2280, United States
Facultad de Ciencias Exactasy Naturales, University of Buenos Aires, C1428EHA Buenos Aires, Argentina
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
Scottish Institute for Cell Signalling, Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, United Kingdom
Novartis Institute for Biomedical Research, Novartis International, AG, CH-4002 Basel, Switzerland
Palabras clave:phosphatase; phosphoprotein; protein kinase; phosphatase; phosphoprotein; phosphotransferase; article; cell growth; controlled study; enzyme activation; hemostasis; in vivo study; nonhuman; phenotype; priority journal; protein analysis; protein phosphorylation; proteomics; Saccharomyces cerevisiae; signal transduction; Bayes theorem; biological model; comparative study; gene deletion; genetics; liquid chromatography; metabolism; methodology; phosphorylation; physiology; Saccharomyces cerevisiae; signal transduction; species difference; tandem mass spectrometry; Eukaryota; Saccharomyces cerevisiae; Bayes Theorem; Chromatography, Liquid; Gene Deletion; Metabolic Networks and Pathways; Models, Biological; Phosphoproteins; Phosphoric Monoester Hydrolases; Phosphorylation; Phosphotransferases; Proteomics; Saccharomyces cerevisiae; Signal Transduction; Species Specificity; Tandem Mass Spectrometry
Año:2010
Volumen:3
Número:153
DOI: http://dx.doi.org/10.1126/scisignal.2001182
Título revista:Science Signaling
Título revista abreviado:Sci. Signal.
ISSN:19450877
CAS:phosphatase, 9013-05-2; protein kinase, 9026-43-1; phosphotransferase, 9031-09-8, 9031-44-1; Phosphoproteins; Phosphoric Monoester Hydrolases, 3.1.3.-; Phosphotransferases, 2.7.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19450877_v3_n153_p_Bodenmiller

Referencias:

  • Cohen, P., Protein kinases-the major drug targets of the twenty-first century? (2002) Nat. Rev. Drug Discov., 1, pp. 309-315
  • Hunter, T., Signaling-2000 and beyond (2000) Cell, 100, pp. 113-127
  • Irish, J.M., Hovland, R., Krutzik, P.O., Perez, O.D., Bruserud Ø, Gjertsen, B.T., Nolan, G.P., Single cell profiling of potentiated phospho-protein networks in cancer cells (2004) Cell, 118, pp. 217-228
  • Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., Zerial, M., Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis (2005) Nature, 436, pp. 78-86
  • Savage, D.G., Antman, K.H., Imatinib mesylate-A new oral targeted therapy (2002) N. Engl. J. Med., 346, pp. 683-693
  • Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Snyder, M., Global analysis of protein phosphorylation in yeast (2005) Nature, 438 (7068), pp. 679-684. , DOI 10.1038/nature04187
  • Linding, R., Jensen, L.J., Ostheimer, G.J., Van Vugt, M.A., Jorgensen, C., Miron, I.M., Diella, F., Pawson, T., Systematic discovery of in vivo phosphorylation networks (2007) Cell, 129, pp. 1415-1426
  • Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G., Mukherjee, P., Silva, A.C., Krogan, N.J., Functional organization of the S. cerevisiae phosphorylation network (2009) Cell, 136, pp. 952-963
  • Rishton, G.M., Failure and success in modern drug discovery: Guiding principles in the establishment of high probability of success drug discovery organizations (2005) Med. Chem., 1, pp. 519-527
  • Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., Morgan, D.O., Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution (2009) Science, 325, pp. 1682-1686
  • Huber, A., Bodenmiller, B., Uotila, A., Stahl, M., Wanka, S., Gerrits, B., Aebersold, R., Loewith, R., Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis (2009) Genes Dev., 23, pp. 1929-1943
  • Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., Mann, M., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks (2006) Cell, 127, pp. 635-648
  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Linton, L.M., International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921
  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T., Sudarsanam, S., The protein kinase complement of the human genome (2002) Science, 298, pp. 1912-1934
  • Mager, W.H., Winderickx, J., Yeast as a model for medical and medicinal research (2005) Trends Pharmacol. Sci., 26, pp. 265-273
  • Lindquist, S., Krobitsch, S., Li, L., Sondheimer, N., Investigating protein conformationbased inheritance and disease in yeast (2001) Philos. Trans. R. Soc. Lond. B Biol. Sci., 356, pp. 169-176
  • Outeiro, T.F., Muchowski, P.J., Molecular genetics approaches in yeast to study amyloid diseases (2004) J. Mol. Neurosci., 23, pp. 49-60
  • Hunter, T., Plowman, G.D., The protein kinases of budding yeast: Six score and more (1997) Trends Biochem. Sci., 22, pp. 18-22
  • Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human (1999) Physiol. Rev., 79, pp. 143-180
  • Simon, J.A., Bedalov, A., Yeast as a model system for anticancer drug discovery (2004) Nat. Rev. Cancer, 4, pp. 481-492
  • Bishop, A.C., Ubersax, J.A., Petsch, D.T., Matheos, D.P., Gray, N.S., Blethrow, J., Shimizu, E., Shokat, K.M., A chemical switch for inhibitor-sensitive alleles of any protein kinase (2000) Nature, 407, pp. 395-401
  • Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B., Aebersold, R., Reproducible isolation of distinct, overlapping segments of the phosphoproteome (2007) Nat. Methods, 4, pp. 231-237
  • Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P., Jorgensen, T.J., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns (2005) Mol. Cell. Proteomics, 4, pp. 873-886
  • Mueller, L.N., Rinner, O., Schmidt, A., Letarte, S., Bodenmiller, B., Brusniak, M.Y., Vitek, O., Muller, M., SuperHirn-A novel tool for high resolution LC-MS-based peptide/protein profiling (2007) Proteomics, 7, pp. 3470-3480
  • Brusniak, M.Y., Bodenmiller, B., Campbell, D., Cooke, K., Eddes, J., Garbutt, A., Lau, H., Watts, J.D., Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics (2008) BMC Bioinformatics, 9, p. 542
  • Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search (2002) Anal. Chem., 74, pp. 5383-5392
  • Elias, J.E., Gygi, S.P., Target-decoy search strategy for increased confidence in largescale protein identifications by mass spectrometry (2007) Nat. Methods, 4, pp. 207-214
  • Smyth, G., Linear models and empirical Bayes methods for assessing differential expression in microarray experiments (2004) Stat. Appl. Genet. Mol. Biol., 3. , Article 3
  • Benjamini, Y., Hochberg, Y., Controlling the false discovery rate-A practical and powerful approach to multiple testing (1995) J. R. Statist. Soc. Series B Stat. Methodol., 57, pp. 289-300
  • Bodenmiller, B., Malmstrom, J., Gerrits, B., Campbell, D., Lam, H., Schmidt, A., Rinner, O., Aebersold, R., PhosphoPep-A phosphoproteome resource for systems biology research in Drosophila Kc167 cells (2007) Mol. Syst. Biol., 3, p. 139
  • Schwartz, D., Chou, M.F., Church, G.M., (2009) Predicting protein post-translational modifications using meta-Analysis of proteome scale data sets. Mol. Cell. Proteomics, 8, pp. 365-379
  • Breitkreutz, B.J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R., Tyers, M., The BioGRID Interaction Database: 2008 update (2008) Nucleic Acids Res., 36, pp. D637-D640
  • Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Von Mering, C., STRING 8-A global view on proteins and their functional interactions in 630 organisms (2009) Nucleic Acids Res., 37, pp. D412-D416
  • Mok, J., Kim, P.M., Lam, H.Y., Piccirillo, S., Zhou, X., Jeschke, G.R., Sheridan, D.L., Turk, B.E., (2010) Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal., 3. , ra12
  • Stark, C., Su, T.C., Breitkreutz, A., Lourenco, P., Dahabieh, M., Breitkreutz, B.J., Tyers, M., Sadowski, I., PhosphoGRID: A database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae (2010) Database (Oxford ), p. 2010. , bap026
  • Ubersax, J.A., Woodbury, E.L., Quang, P.N., Paraz, M., Blethrow, J.D., Shah, K., Shokat, K.M., Morgan, D.O., Targets of the cyclin-dependent kinase Cdk1 (2003) Nature, 425, pp. 859-864
  • Hirata, Y., Andoh, T., Asahara, T., Kikuchi, A., Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes (2003) Mol. Biol. Cell, 14, pp. 302-312
  • Hinnebusch, A.G., Natarajan, K., Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress (2002) Eukaryot. Cell, 1, pp. 22-32
  • Sterner, D.E., Lee, J.M., Hardin, S.E., Greenleaf, A.L., The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex (1995) Mol. Cell. Biol, 15, pp. 5716-5724
  • Grose, J.H., Smith, T.L., Sabic, H., Rutter, J., Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling (2007) EMBO J., 26, pp. 4824-4830
  • Hillenmeyer, M.E., Fung, E., Wildenhain, J., Pierce, S.E., Hoon, S., Lee, W., Proctor, M., Giaever, G., The chemical genomic portrait of yeast: Uncovering a phenotype for all genes (2008) Science, 320, pp. 362-365
  • Ohya, Y., Sese, J., Yukawa, M., Sano, F., Nakatani, Y., Saito, T.L., Saka, A., Morishita, S., High-dimensional and large-scale phenotyping of yeast mutants (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 19015-19020
  • Blacketer, M.J., Koehler, C.M., Coats, S.G., Myers, A.M., Madaule, P., Regulation of dimorphism in Saccharomyces cerevisiae: Involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A (1993) Mol. Cell. Biol., 13, pp. 5567-5581
  • Thomson, M., Gunawardena, J., Unlimited multistability in multisite phosphorylation systems (2009) Nature, 460, pp. 274-277
  • Ashby, W.R., (1956) An Introduction to Cybernetics, , Chapman & Hall Ltd.,London
  • Ashby, W.R., Requisite variety and its implications for the control of complex systems (1958) Cybernetica, 1, pp. 83-99
  • Kimura, M., Evolutionary rate at the molecular level (1968) Nature, 217, pp. 624-626
  • Lange, V., Picotti, P., Domon, B., Aebersold, R., Selected reaction monitoring for quantitative proteomics: A tutorial (2008) Mol. Syst. Biol., 4, p. 222
  • Picotti, P., Aebersold, R., Domon, B., The implications of proteolytic background for shotgun proteomics (2007) Mol. Cell. Proteomics, 6, pp. 1589-1598
  • Picotti, P., Lam, H., Campbell, D., Deutsch, E.W., Mirzaei, H., Ranish, J., Domon, B., Aebersold, R., A database of mass spectrometric assays for the yeast proteome (2008) Nat. Methods, 5, pp. 913-914
  • Bodenmiller, B., Campbell, D., Gerrits, B., Lam, H., Jovanovic, M., Picotti, P., Schlapbach, R., Aebersold, R., PhosphoPep-A database of protein phosphorylation sites in model organisms (2008) Nat. Biotechnol., 26, pp. 1339-1340
  • Acknowledgments: We thank the whole team of the Functional Genomics Center Zurich (FGCZ) for fruitful discussions. We thank C. Zheng, Department of Statistics, Purdue University, for help with use and interpretation of the Limma package. Funding: This project was funded in part by ETH Zurich; Federal funds from the National Heart, Lung, and Blood Institute, NIH, under contract no. N01-HV-28179; the PhosphoNetX project of SystemsX.ch, the Swiss initiative for systems biology; and the European Research Council (grant ERC-2008-AdG 233226) to R.A. Work at the FGCZ and at the von Mering laboratory has been supported by the University Research Priority Program Systems Biology and Functional Genomics of the University of Zurich. B.G. is supported by the Bonizzi-Theler Foundation. C.K. is supported by a Marie-Heim Vögtlin fellowship from the Swiss National Science Foundation (SNF)

Citas:

---------- APA ----------
Bodenmiller, B., Wanka, S., Kraft, C., Urban, J., Campbell, D., Pedrioli, P.G., Gerrits, B.,..., Aebersold, R. (2010) . Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Science Signaling, 3(153).
http://dx.doi.org/10.1126/scisignal.2001182
---------- CHICAGO ----------
Bodenmiller, B., Wanka, S., Kraft, C., Urban, J., Campbell, D., Pedrioli, P.G., et al. "Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast" . Science Signaling 3, no. 153 (2010).
http://dx.doi.org/10.1126/scisignal.2001182
---------- MLA ----------
Bodenmiller, B., Wanka, S., Kraft, C., Urban, J., Campbell, D., Pedrioli, P.G., et al. "Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast" . Science Signaling, vol. 3, no. 153, 2010.
http://dx.doi.org/10.1126/scisignal.2001182
---------- VANCOUVER ----------
Bodenmiller, B., Wanka, S., Kraft, C., Urban, J., Campbell, D., Pedrioli, P.G., et al. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal. 2010;3(153).
http://dx.doi.org/10.1126/scisignal.2001182