Garate, H.; Bianchi, M.; Pietrasanta, L.I.; Goyanes, S.; D'Accorso, N.B."High-energy dissipation performance in epoxy coatings by the synergistic effect of carbon nanotube/block copolymer conjugates" (2017) ACS Applied Materials and Interfaces. 9(1):930-943
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Hierarchical assembly of hard/soft nanoparticles holds great potential as reinforcements for polymer nanocomposites with tailored properties. Here, we present a facile strategy to integrate polystyrene-grafted carbon nanotubes (PSgCNT) (0.05-0.3 wt %) and poly(styrene-b- [isoprene-ran-epoxyisoprene]-b-styrene) block copolymer (10 wt %) into epoxy coatings using an ultrasound-assisted noncovalent functionalization process. The method leads to cured nanocomposites with core-shell block copolymer (BCP) nanodomains which are associated with carbon nanotubes (CNT) giving rise to CNT-BCP hybrid structures. Nanocomposite energy dissipation and reduced Young's Modulus (E∗) is determined from force-distance curves by atomic force microscopy operating in the PeakForce QNM imaging mode and compared to thermosets modified with BCP and purified carbon nanotubes (pCNT). Remarkably, nanocomposites bearing PSgCNT-BCP conjugates display an increase in energy dissipation of up to 7.1-fold with respect to neat epoxy and 53% more than materials prepared with pCNT and BCP at the same CNT load (0.3 wt %), while reduced Young's Modulus shows no significant change with CNT type and increases up to 25% compared to neat epoxy E∗ at a CNT load of 0.3 wt %. The energy dissipation performance of nanocomposites is also reflected by the lower wear coefficients of materials with PSgCNT and BCP compared to those with pCNT and BCP, as determined by abrasion tests. Furthermore, scanning electron microscopy (SEM) images taken on wear surfaces show that materials incorporating PSgCNT and BCP exhibit much more surface deformation under shear forces in agreement with their higher ability to dissipate more energy before particle release. We propose that the synergistic effect observed in energy dissipation arises from hierarchical assembly of PSgCNT and BCP within the epoxy matrix and provides clues that the CNT-BCP interface has a significant role in the mechanisms of energy dissipation of epoxy coating modified by CNT-BCP conjugates. These findings provide a means to design epoxy-based coatings with high-energy dissipation performance. © 2016 American Chemical Society.


Documento: Artículo
Título:High-energy dissipation performance in epoxy coatings by the synergistic effect of carbon nanotube/block copolymer conjugates
Autor:Garate, H.; Bianchi, M.; Pietrasanta, L.I.; Goyanes, S.; D'Accorso, N.B.
Filiación:CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN-UBA, Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
Centro de Microscopías Avanzadas, FCEyN-UBA, Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
LPandMC, Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
IFIBA-CONICET, Departamento de Física, FCEyN-UBA, Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
LIONS, NIMBE, CEA, CNRS, Universiteé Paris-Saclay, CEA-Saclay, Cedex Gif-sur-Yvette, 91191, France
Palabras clave:Block copolymer (BCP); Carbon nanotubes (CNT); Energy dissipation; Epoxy coatings; Nanocomposites; Wear resistance; Atomic force microscopy; Block copolymers; Coatings; Elastic moduli; Energy dissipation; Epoxy resins; Nanocomposites; Nanotubes; Plastic coatings; Scanning electron microscopy; Styrene; Wear resistance; Yarn; Epoxy coatings; Force-distance curves; Hierarchical assemblies; Non-covalent functionalization; Polymer nanocomposite; Scanning electron microscopy image; Surface deformation; Tailored properties; Carbon nanotubes
Página de inicio:930
Página de fin:943
Título revista:ACS Applied Materials and Interfaces
Título revista abreviado:ACS Appl. Mater. Interfaces


  • Baur, J., Silverman, E., Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications (2007) MRS Bull., 32, pp. 328-334
  • Li, Q., Chen, L., Gadinski, R., Zhang, S., Zhang, G., Li, H.L., Iagodkine, E., Wang, Q., Flexible high-temperature dielectric materials from polymer nanocomposites (2015) Nature, 523, pp. 576-579
  • Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J., Sternstein, S.S., Buehler, M.J., Current issues in research on structure-property relationships in polymer nanocomposites (2010) Polymer, 51, pp. 3321-3343
  • Kang, Y.J., Chun, S.-J., Lee, S.-S., Kim, B.-Y., Kim, K.H., Chung, H., Lee, S.-Y., Kim, W., All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels (2012) ACS Nano, 6, pp. 6400-6406
  • Choi, J.R., Yu, S., Jung, H., Hwang, S.K., Kim, R.H., Song, G., Cho, S.H., Park, C., Self-assembled block copolymer micelles with silver-carbon nanotube hybrid fillers for high performance thermal conduction (2015) Nanoscale, 7, pp. 1888-1895
  • De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J., Carbon nanotubes: Present and future commercial applications (2013) Science, 339, pp. 535-539
  • Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S., Liao, K., Physical interactions at carbon nanotube-polymer interface (2003) Polymer, 44, pp. 7757-7764
  • Liu, Y.T., Zhao, W., Huang, Z.Y., Gao, Y.F., Xie, X.M., Wang, X.H., Ye, X.Y., Noncovalent surface modification of carbon nanotubes for solubility in organic solvents (2006) Carbon, 44, pp. 1613-1616
  • Garate, H., De Falco, A., Moreno, M.S., Fascio, M.L., Goyanes, S., D'Accorso, N.B., Influence of electronic distribution of polymers in the spatial conformation of polymer grafted carbon nanotube composites (2012) Phys. B, 407, pp. 3184-3187
  • Roumeli, E., Papageorgiou, D.G., Tsanaktsis, V., Terzopoulou, Z., Chrissafis, K., Avgeropoulos, A., Bikiaris, D.N., Amino-functionalized multiwalled carbon nanotubes lead to successful ring-opening polymerization of poly(ϵ-caprolactone): Enhanced interfacial bonding and optimized mechanical properties (2015) ACS Appl. Mater. Interfaces, 7 (21), pp. 11683-11694
  • Khare, S.K., Khabaz, F., Khare, R., Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: Role of strengthening the interfacial interactions (2014) ACS Appl. Mater. Interfaces, 6, pp. 6098-6110
  • Yoonessi, M., Lebrón-Colón, M., Scheiman, D., Meador, M.A., Carbon nanotube epoxy nanocomposites: The effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites (2014) ACS Appl. Mater. Interfaces, 6, pp. 16621-16630
  • Enotiadis, A., Litina, K., Gournis, D., Rangou, S., Avgeropoulos, A., Xidas, P., Triantafyllidis, K., Nanocomposites of polystyrene-b-poly(isoprene)-b-polystyrene triblock copolymer with clay-carbon nanotube hybrid nanoadditives (2013) J. Phys. Chem. B, 117, pp. 907-915
  • Kang, Y., Taton, A., Micelle-encapsulated carbon nanotubes: A route to nanotube composites (2003) J. Am. Chem. Soc., 125, pp. 5650-5651
  • Gegenhuber, T., Gröschel, A.H., Löbling, T.I., Drechsler, M., Ehlert, S., Förster, S., Schmalz, H., Noncovalent grafting of carbon nanotubes with triblock terpolymers: Toward patchy 1d hybrids (2015) Macromolecules, 48, pp. 1767-1776
  • Yerushalmi-Rozen, R., Szleifer, I., Utilizing polymers for shaping the interfacial behavior of carbon nanotubes (2006) Soft Matter, 2, pp. 24-28
  • Bates, F.S., Hillmyer, M.A., Lodge, T.P., Bates, C.M., Delaney, K.T., Fredrickson, G.H., Multiblock polymers: Panacea or pandora's box? (2012) Science, 336, pp. 434-440
  • Garate, H., Morales, N.J., Goyanes, S., D'Accorso, N.B., (2015) Handbook of Epoxy Blends; Parameswaranpillai, , J., Hameed, N., Pionteck, J., Woo, E. M., Eds.; Springer International Publishing AG: Cham, Switzerland
  • Garate, H., Goyanes, S., D'Accorso, N.B., Controlling nanodomain morphology of epoxy thermosets modified with reactive amine-containing epoxidized poly(styrene-b-isoprene-bstyrene) block copolymer (2014) Macromolecules, 47, pp. 7416-7423
  • Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., Pascault, J.P., ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties (2003) Macromolecules, 36, pp. 118-126
  • Jia, L., Petretic, A., Molev, G., Guerin, G., Manners, I., Winnik, M.A., Hierarchical polymer-carbon nanotube hybrid mesostructures by crystallization-driven self-assembly (2015) ACS Nano, 9, pp. 10673-10685
  • Li, Y., Yang, D., Adronov, A., Gao, Y., Luo, X., Li, H., Covalent functionalization of single-walled carbon nanotubes with thermoresponsive core cross-linked polymeric micelles (2012) Macromolecules, 45, pp. 4698-4706
  • Yang, Z., Xue, Z., Liao, Y., Zhou, X., Zhou, J., Zhu, J., Xie, X., Hierarchical hybrids of carbon nanotubes in amphiphilic poly-(ethylene oxide)-block-polyaniline through a facile method: From smooth to thorny (2013) Langmuir, 29, pp. 3757-3764
  • Gegenhuber, T., Krekhova, M., Schobel, J., Gröschel, A.H., Schmalz, H., "Patchy" carbon nanotubes as efficient compatibilizers for polymer blends (2016) ACS Macro Lett, 5, pp. 306-310
  • Esposito, H.L., Ramos, J.A., Mondragon, I., Kortaberria, G., Nanostructured thermosetting epoxy system modified with poly-(isoprene-b-methyl metacrylate) diblock copolymer and polyisoprene-grafted carbon nanotubes (2013) J. Appl. Polym. Sci., 129, pp. 1060-1067
  • Esposito, L.H., Ramos, J.A., Kortaberria, G., Dispersion of carbon nanotubes in nanostructured epoxy systems for coating application (2014) Prog. Org. Coat., 77, pp. 1452-1458
  • Martin-Gallego, M., Verdejo, R., Gestos, A., Lopez-Manchado, M.A., Guo, Q., Morphology and mechanical properties of nanostructured thermoset/block copolymer blends with carbon nanoparticles (2015) Composites, Part A, 71, pp. 136-143
  • Gardea, F., Glaz, B., Riddick, J., Lagoudas, D.C., Naraghi, M., Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes (2015) ACS Appl. Mater. Interfaces, 7, pp. 9725-9735
  • Li, T., Heinzer, M.J., Francis, L.F., Bates, F.S., Engineering superior toughness in commercially viable block copolymer modified epoxy resin (2016) J. Polym. Sci., Part B: Polym. Phys., 54, pp. 189-204
  • Garate, H., Fascio, M.L., Mondragon, I., D'Accorso, N.B., Goyanes, S., Surfactant-aided dispersion of polystyrene-functionalized carbon nanotubes in a nanostructured poly(styrene-bisoprene-b-styrene) block copolymer (2011) Polymer, 52, pp. 2214-2220
  • Albuerne, J., Boschetti-De-Fierro, A., Abetz, C., Fierro, D., Abetz, V., Block copolymer nanocomposites based on multiwall carbon nanotubes: Effect of the functionalization of multiwall carbon nanotubes on the morphology of the block copolymer (2011) Adv. Eng. Mater., 13, pp. 803-810
  • Garate, H., Mondragon, I., D'Accorso, N.B., Goyanes, S., Exploring microphase separation behavior of epoxidized poly-(styrene-b-isoprene-b-styrene) block copolymer inside thin epoxy coatings (2013) Macromolecules, 46, pp. 2182-2187
  • Garate, H., Mondragon, I., Goyanes, S., D'Accorso, N.B., Controlled epoxidation of poly(styrene-b-isoprene-b-styrene) for the development of nanostructured epoxy thermosets (2011) J. Polym. Sci., Part A: Polym. Chem., 49, pp. 4505-4513
  • Gudzinowicz, B.J., Quantitative determination of ethylene epoxide, propylene epoxide, and higher molecular weight epoxides using dodecanothiol (1960) Anal. Chem., 32, pp. 1520-1522
  • Lin, X.M., Jaeger, H.M., Sorensen, C.M., Klabunde, K.J., Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates (2001) J. Phys. Chem. B, 105, pp. 3353-3357
  • Ooi, S.K., Cook, W.D., Simon, G.P., Such, C.H., Dsc studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents (2000) Polymer, 41, pp. 3639-3649
  • Guzmán, D., Ramis, X., Fernández-Francos, X., Serra, A., New catalysts for diglycidyl ether of bisphenol a curing based on thiol-epoxy click reaction (2014) Eur. Polym. J., 59, pp. 377-386
  • Loureiro, R.M., Amarelo, T.C., Abuin, S.P., Soulé, E.R., Williams, R.J.J., Kinetics of the epoxy-thiol click reaction initiated by a tertiary amine: Calorimetric study using monofunctional components (2015) Thermochim. Acta, 616, pp. 79-86
  • Pittenger, B., Erina, N., Su, C., (2014) Nanomechanical Analysis of High Performance Materials, Solid Mechanics and Its Applications, , Tiwari, A., Ed.; Springer: Dordrecht, Netherlands
  • Hutter, J.L., Bechhoefer, J., Calibration of atomic-force microscope tips (1993) Rev. Sci. Instrum., 64, pp. 1868-1873
  • Chyasnavichyus, M., Young, S.L., Geryak, R., Tsukruk, V.V., Probing elastic properties of soft materials with afm: Data analysis for different tip geometries (2016) Polymer, 102, pp. 317-325
  • Maugis, D., (2000) Contact, Adhesion and Rupture of Elastic Solids, , Springer-Verlag: Berlin
  • Butt, H.-J., Cappella, B., Kappl, L., Force measurements with the atomic force microscope: Technique, interpretation and applications (2005) Surf. Sci. Rep., 59, pp. 1-152
  • Kassman, A., Jacobson, S., Erickson, L., Hedenqvist, P., Olsson, M., A new test method for the intrinsec abrasion resistance of thin coatings (1991) Surf. Coat. Technol., 50, pp. 75-84
  • Quercia, G., Grigorescu, I., Contreras, H., Di Rauso, C., Gutierrez Campos, D., Friction and wear behavior of several hard materials (2001) Int. J. Refract. Hard Met., 19, pp. 359-369
  • Archard, J.F., Contact and rubbing of flat surfaces (1953) J. Appl. Phys., 24, pp. 981-989
  • Rutherford, K., Hutchings, I., A micro-abrasive wear test, with particular application to coated systems (1996) Surf. Coat. Technol., 79, pp. 231-239
  • Van Krevelen, D.W., (1990) Properties of Polymers, , Elsevier Scientific Publishing Co.: Amsterdam
  • Peponi, L., Tercjak, A., Torre, L., Kenny, J.M., Mondragon, I., Morphological analysis of self-assembled sis block copolymer matrices containing silver nanoparticles (2008) Compos. Sci. Technol., 68, pp. 1631-1636
  • Bilalis, P., Katsigiannopoulos, D., Avgeropoulos, A., Sakellariou, G., Non-covalent functionalization of carbon nanotubes with polymers (2014) RSC Adv., 4, pp. 2911-2934
  • Makarova, T.L., Zakharchuk, I., Geydt, P., Lahderanta, E., Komlev, A.A., Zyrianova, A.A., Lyubchyk, A., Okotrub, A.V., Assessing carbon nanotube arrangement in polystyrene matrix by magnetic susceptibility measurements (2016) Carbon, 96, pp. 1077-1083
  • Ramasubramaniam, R., Chen, J., Liu, H., Homogeneous carbon nanotube/polymer composites for electrical applications (2003) Appl. Phys. Lett., 83, pp. 2928-2930
  • Bauhofer, W., Kovacs, J.Z., A review and analysis of electrical percolation in carbon nanotube polymer composites (2009) Compos. Sci. Technol., 69, pp. 1486-1498
  • Hameed, N., Guo, Q., Xu, Z., Hanley, T.L., Mai, Y.-W., Reactive block copolymer modified thermosets: Highly ordered nanostructures and improved properties (2010) Soft Matter, 6, pp. 6119-6129
  • Peponi, L., Valentini, L., Torre, L., Mondragon, I., Kenny, J.M., Surfactant assisted selective confinement of carbon nanotubes functionalized with octadecylamine in a poly(styrene-b-isoprene-bstyrene) block copolymer matrix (2009) Carbon, 47, pp. 2474-2480
  • González-Domínguez, J.M., Ansón-Casaos, A., Díez-Pascual, A.M., Ashrafi, B., Naffakh, M., Backman, D., Stadler, H., Martínez, M.T., Solvent-free preparation of high-toughness epoxy-swcnt composite materials (2011) ACS Appl. Mater. Interfaces, 3, pp. 1441-1450
  • González-Domínguez, J.M., Martínez-Rubí, Y., Díez-Pascual, A.M., Ansón-Casaos, A., Gómez-Fatou, M., Simard, B., Martínez, M.T., Reactive fillers based on swcnts functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties (2012) Nanotechnology, 23, pp. 285702-285715
  • Serrano, E., Tercjak, A., Kortaberria, G., Pomposo, J.A., Mecerreyes, D., Zafeiropoulos, N.E., Stamm, M., Mondragon, I., Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers (2006) Effect of Epoxidation Degree. Macromolecules, 39, pp. 2254-2261
  • Karippal, J.J., Narasimha Murthy, H.N., Rai, K.S., Krishna, M., Sreejith, M., The processing and characterization of mwcnt/epoxy and cb/epoxy nanocomposites using twin screw extrusion (2010) Polym.-Plast. Technol. Eng., 49, pp. 1207-1213
  • Arras, M.L., Schillai, C., Jandt, K.D., Enveloping self-assembly of carbon nanotubes at copolymer micelle cores (2014) Langmuir, 30, pp. 14263-14269
  • Hameed, N., Salim, N.V., Hanley, T.L., Sona, M., Fox, B.L., Guo, Q., Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids (2013) Phys. Chem. Chem. Phys., 15, pp. 11696-11703
  • Pfreundschuh, M., Martinez-Martin, D., Mulvihill, E., Wegmann, S., Muller, D.J., Multiparametric high-resolution imaging of native proteins by force-distance curve-based afm (2014) Nat. Protoc., 9, pp. 1113-1130
  • Declet-Perez, C., Francis, L.F., Bates, F.S., Deformation processes in block copolymer toughened epoxies (2015) Macromolecules, 48, pp. 3672-3684
  • Cui, L.-J., Geng, H.-Z., Wang, W.-Y., Chen, L.-T., Gao, J., Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites (2013) Carbon, 54, pp. 277-282
  • Holmberg, K., Ronkainen, H., Matthews, A., Tribology of thin coatings (2000) Ceram. Int., 26, pp. 787-795
  • Lee, L.H., Fracture energetics and surface energetics in polymer wear (1985) ACS Symp. Ser., 287, pp. 27-38
  • Kim, S., Nealey, P.F., Bates, F.S., Decoupling bulk thermodynamics and wetting characteristics of block copolymer thin films (2012) ACS Macro Lett., 1, pp. 11-14
  • Li, T., Heinzer, M.J., Redline, E.M., Zuo, F., Bates, F.S., Francis, L.F., Microstructure and performance of block copolymer modified epoxy coatings (2014) Prog. Org. Coat., 77, pp. 1145-1154
  • Hsu, S.-H., Wu, M.-C., Chen, S., Chuang, C.-M., Lin, S.-H., Su, W.-F., Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites (2012) Carbon, 50, pp. 896-905
  • Zhang, L.C., Zarudi, I., Xiao, K.Q., Novel behavior of friction and wear of epoxy composites reinforced by carbon nanotubes (2006) Wear, 261, pp. 806-811


---------- APA ----------
Garate, H., Bianchi, M., Pietrasanta, L.I., Goyanes, S. & D'Accorso, N.B. (2017) . High-energy dissipation performance in epoxy coatings by the synergistic effect of carbon nanotube/block copolymer conjugates. ACS Applied Materials and Interfaces, 9(1), 930-943.
---------- CHICAGO ----------
Garate, H., Bianchi, M., Pietrasanta, L.I., Goyanes, S., D'Accorso, N.B. "High-energy dissipation performance in epoxy coatings by the synergistic effect of carbon nanotube/block copolymer conjugates" . ACS Applied Materials and Interfaces 9, no. 1 (2017) : 930-943.
---------- MLA ----------
Garate, H., Bianchi, M., Pietrasanta, L.I., Goyanes, S., D'Accorso, N.B. "High-energy dissipation performance in epoxy coatings by the synergistic effect of carbon nanotube/block copolymer conjugates" . ACS Applied Materials and Interfaces, vol. 9, no. 1, 2017, pp. 930-943.
---------- VANCOUVER ----------
Garate, H., Bianchi, M., Pietrasanta, L.I., Goyanes, S., D'Accorso, N.B. High-energy dissipation performance in epoxy coatings by the synergistic effect of carbon nanotube/block copolymer conjugates. ACS Appl. Mater. Interfaces. 2017;9(1):930-943.