Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The search for strategies to improve the performance of bioelectrochemical platforms based on supramolecular materials has received increasing attention within the materials science community, where the main objective is to develop lowcost and flexible routes using self-Assembly as a key enabling process. Important contributions to the performance of such bioelectrochemical devices have been made based on the integration and supramolecular organization of redox-Active polyelectrolyte-surfactant complexes on electrode supports. Here, we examine the influence of the processing solvent on the interplay between the supramolecular mesoorganization and the bioelectrochemical properties of redox-Active self-Assembled nanoparticle- polyelectrolyte-surfactant nanocomposite thin films. Our studies reveal that the solvent used in processing the supramolecular films and the presence of metal nanoparticles not only have a substantial influence in determining the mesoscale organization and morphological characteristics of the film but also have a strong influence on the efficiency and performance of the bioelectrochemical system. In particular, a higher bioelectrochemical response is observed when nanocomposite supramolecular films were cast from aqueous solutions. These observations seem to be associated with the fact that the use of aqueous solvents increases the hydrophilicity of the film, thus favoring the access of glucose, particularly at low concentrations. We believe that these results improve our current understanding of supramolecular nanocomposite materials generated via polyelectrolyte-surfactant complexes, in order to use the processing conditions as a variable to improve the performance of bioelectrochemical devices. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Solvent effects on the structure-property relationship of redox-Active self-Assembled nanoparticle-polyelectrolyte-surfactant composite thin films: Implications for the generation of bioelectrocatalytic signals in enzyme-containing assemblies
Autor:Cortez, M.L.; Ceolín, M.; Camacho, L.C.; Donath, E.; Moya, S.E.; Battaglini, F.; Azzaroni, O.
Filiación:Departamento de Química Inorgánica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas Y Aplicadas (INIFTA), Universidad Nacional de la Plata, La Plata, Argentina
Faculty of Medicine, Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
CIC biomaGUNE, Paseo Miramón 182, San Sebastián, Gipuzkoa, 20009, Spain
Palabras clave:Bioelectrochemistry; Metal nanoparticles; Nanocomposite thin films; Polyelectrolyte-surfactant complexes; Redox-Active polymers; Self-Assembly; Structure-property relationship; Supramolecular materials; Biochemistry; Composite films; Electrophysiology; Films; Hydrophilicity; Metal nanoparticles; Nanocomposites; Nanoparticles; Polyelectrolytes; Redox reactions; Self assembly; Solutions; Solvents; Supramolecular chemistry; Surface active agents; Thin films; Bioelectrochemistry; Nanocomposite thin films; Polyelectrolyte-surfactant complexes; Redox-active; Structure property relationships; Supramolecular materials; Nanocomposite films; glucose oxidase; polyelectrolyte; solvent; surfactant; chemistry; oxidation reduction reaction; Glucose Oxidase; Oxidation-Reduction; Polyelectrolytes; Solvents; Surface-Active Agents
Año:2017
Volumen:9
Número:1
Página de inicio:1119
Página de fin:1128
DOI: http://dx.doi.org/10.1021/acsami.6b13456
Título revista:ACS Applied Materials and Interfaces
Título revista abreviado:ACS Appl. Mater. Interfaces
ISSN:19448244
CAS:glucose oxidase, 9001-37-0; Glucose Oxidase; Polyelectrolytes; Solvents; Surface-Active Agents
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19448244_v9_n1_p1119_Cortez

Referencias:

  • Ghosh, S., Maiyalagan, T., Basu, R.N., Nanostructured conducting polymers for energy applications: Towards a sustainable platform (2016) Nanoscale, 8, pp. 6921-6947
  • Son, E.J., Kim, J.H., Kim, K., Park, C.B., Quinone and its derivatives for energy harvesting and storage materials (2016) J. Mater. Chem. A, 4, pp. 11179-11202
  • Choi, S., Microscale microbial fuel cells: Advances and challenges (2015) Biosens. Bioelectron, 69, pp. 8-25
  • Ma, J., Sahai, Y., Chitosan biopolymer for fuel cell applications (2013) Carbohydr. Polym, 92, pp. 955-975
  • Liang, Y., Li, Y., Wang, H., Dai, H., Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis (2013) J. Am. Chem. Soc, 135, pp. 2013-2036
  • Liu, J., Liu, Z., Barrow, C.J., Yang, W., Molecularly engineered graphene surfaces for sensing applications: A review (2015) Anal. Chim. Acta, 859, pp. 1-19
  • Katsounaros, I., Cherevko, S., Zeradjanin, A.R., Mayrhofer, K.J.J., Oxygen electrochemistry as a cornerstone for sustainable energy conversion (2014) Angew. Chem., Int. Ed, 53, pp. 102-121
  • Coutanceau, C., Brimaud, S., Lamy, C., Léger, J.M., Dubau, L., Rousseau, S., Vigier, F., Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds (2008) Electrochim. Acta, 53, pp. 6865-6880
  • Feifel, S.C., Kapp, A., Ludwig, R., Lisdat, F., Nanobiomolecular multiprotein clusters on electrodes for the formation of a switchable cascadic reaction scheme (2014) Angew. Chem., Int. Ed, 53, pp. 5676-5679
  • Zayats, M., Willner, B., Willner, I., Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes (2008) Electroanalysis, 20, pp. 583-601
  • Leech, D., Kavanagh, P., Schuhmann, W., Enzymatic fuel cells: Recent progress (2012) Electrochim. Acta, 84, pp. 223-234
  • Suginta, W., Khunkaewla, P., Schulte, A., Electrochemical biosensor applications of polysaccharides chitin and chitosan (2013) Chem. Rev, 113, pp. 5458-5479
  • Li, J., Yuan, R., Chai, Y., Che, X., Li, W., Construction of an amperometric glucose biosensor based on the immobilization of glucose oxidase onto electrodeposited pt nanoparticles-chitosan composite film (2012) Bioprocess Biosyst. Eng, 35, pp. 1089-1095
  • Scognamiglio, V., Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years (2013) Biosens. Bioelectron, 47, pp. 12-25
  • Ko, S., Park, T.J., Kim, H.S., Kim, J.H., Cho, Y.J., Directed self-Assembly of gold binding polypeptide-protein a fusion proteins for development of gold nanoparticle-based spr immunosensors (2009) Biosens. Bioelectron, 24, pp. 2592-2597
  • Wang, H., Wu, J., Li, J., Ding, Y., Shen, G., Yu, R., Nanogold particle-enhanced oriented adsorption of antibody fragments for immunosensing platforms (2005) Biosens. Bioelectron, 20, pp. 2210-2217
  • Katz, E., Willner, I., Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications (2004) Angew. Chem., Int. Ed, 43, pp. 6042-6108
  • Willner, I., Willner, B., Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications (2002) Pure Appl. Chem, 74, pp. 1773-1783
  • Tel-Vered, R., Kahn, J.S., Willner, I., Layered metal nanoparticle structures on electrodes for sensing, switchable controlled uptake/release, and photo-electrochemical applications (2016) Small, 12, pp. 51-75
  • Yehezkeli, O., Tel-Vered, R., Raichlin, S., Willner, I., Nano- Engineered flavin-dependent glucose dehydrogenase/gold nanoparticle- modified electrodes for glucose sensing and biofuel cell applications (2011) ACS Nano, 5, pp. 2385-2391
  • Chazalviel, J.N., Allongue, P., On the origin of the efficient nanoparticle mediated electron transfer across a self-Assembled monolayer (2011) J. Am. Chem. Soc, 133, pp. 762-764
  • Barfidokht, A., Ciampi, S., Luais, E., Darwish, N., Gooding, J.J., Distance-Dependent electron transfer at passivated electrodes decorated by gold nanoparticles (2013) Anal. Chem, 85, pp. 1073-1080
  • Udeh, C.U., Fey, N., Faul, C.F.J., Functional block-like structures from electroactive tetra (aniline) oligomers (2011) J. Mater. Chem, 21, pp. 18137-18153
  • Ahmed, R., Hsiao, M.-S., Matsuura, Y., Houbenov, N., Faul, C.F.J., Manners, I., Redox-Active mesomorphic complexes from the ionic self-Assembly of cationic polyferrocenylsilane polyelectrolytes and anionic surfactants (2011) Soft Matter, 7, pp. 10462-10471
  • Wei, Z., Faul, C.F.J., Aniline oligomers-Architecture, function and new opportunities for nanostructured materials (2008) Macromol. Rapid Commun, 29, pp. 280-292
  • Wei, Z., Laitinen, T., Smarsly, B., Ikkala, O., Faul, C.F.J., Self- Assembly and electrical conductivity transitions in conjugated oligoaniline-surfactant complexes (2005) Angew. Chem., Int. Ed, 44, pp. 751-756
  • Cheng, Z.Y., Ren, B.Y., Chang, X.Y., Liu, R., Tong, Z., Novel redox-Active ionic thermotropic liquid crystalline complexes of polyelectrolyte and ferrocenyl surfactants (2012) Chin. Chem. Lett, 23, pp. 619-622
  • Cheng, Z., Ren, B., Zhao, D., Liu, X., Tong, Z., Novel thermotropic liquid crystalline and redox-Active complexes of ionically self-Assembled poly (ferrocenylsilane) and dendritic amphiphiles (2009) Macromolecules, 42, pp. 2762-2766
  • Cheng, Z., Ren, B., Gao, M., Liu, X., Tong, Z., Ionic self-Assembled redox-Active polyelectrolyte-ferrocenyl surfactant complexes: Mesomorphous structure and electrochemical behavior (2007) Macromolecules, 40, pp. 7638-7643
  • Faul, C.F.J., Liquid-Crystalline materials by the ionic self-Assembly route (2006) Mol. Cryst. Liq. Cryst, 450, pp. 255-265
  • Faul, C.F.J., Antonietti, M., Ionic self-Assembly: Facile synthesis of supramolecular materials (2003) Adv. Mater, 15, pp. 673-683
  • Faul, C.F.J., Ionic Self-Assembly for functional hierarchical nanostructured materials (2014) Acc. Chem. Res, 47, pp. 3428-3438
  • Thünemann, A.F., Polyelectrolyte-Surfactant complexes. Synthesis, structure and materials aspects (2002) Prog. Polym. Sci, 27, pp. 1473-1572
  • Macknight, W.J., Ponomarenko, E.A., Tirrell, D.A., Self-Assembled polyelectrolyte - surfactant complexes in nonaqueous solvents and in the solid state (1998) Acc. Chem. Res, 31, pp. 781-788
  • Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Electrochemical sensing platform based on polyelectrolyte-surfactant supramolecular assemblies incorporating carbon nanotubes (2011) Anal. Chem, 83, pp. 8011-8018
  • Cortez, M.L., González, G.A., Battaglini, F., An electroactive versatile matrix for the construction of sensors (2011) Electroanalysis, 23, pp. 156-160
  • Cortez, M.L., González, G.A., Ceolín, M., Azzaroni, O., Battaglini, F., Self-Assembled redox polyelectrolyte-surfactant complexes: Nanostructure and electron transfer characteristics of supramolecular films with built-in electroactive chemical functions (2014) Electrochim. Acta, 118, pp. 124-129
  • Cortez, M.L., Marmisollé, W., Pallarola, D., Pietrasanta, L.I., Murgida, D.H., Ceolín, M., Azzaroni, O., Battaglini, F., Effect of gold nanoparticles on the structure and electron-Transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes (2014) Chem. - Eur. J, 20, pp. 13366-13374
  • Calvo, E.J., Battaglini, F., Danilowicz, C., Wolosiuk, A., Otero, M., Layer-by-Layer electrostatic deposition of biomolecules on surfaces for molecular recognition, redox mediation and signal generation (2000) Faraday Discuss, 116, pp. 47-65
  • Scodeller, P., Williams, F.J., Calvo, E.J., Xps analysis of enzyme and mediator at the surface of a layer-by-layer self-Assembled wired enzyme electrode (2014) Anal. Chem, 86, pp. 12180-12184
  • Dronov, R., Kurth, D.G., Möhwald, H., Spricigo, R., Leimkühler, S., Wollenberger, U., Rajagopalan, K.V., Lisdat, F., Layer-by-Layer arrangement by protein-protein interaction of sulfite oxidase and cytochrome c catalyzing oxidation of sulfite (2008) J. Am. Chem. Soc, 130, pp. 1122-1123
  • Godman, N.P., DeLuca, J.L., McCollum, S.R., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical characterization of layer-by- layer assembled ferrocene-modified linear poly (ethylenimine)/enzyme bioanodes for glucose sensor and biofuel cell applications (2016) Langmuir, 32, pp. 3541-3551
  • Kim, J.H., Hong, S.-G., Sun, H.J., Ha, S., Kim, J., Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing (2016) Chemosphere, 143, pp. 142-147
  • Guerrieri, A., Ciriello, R., Cataldi, T.R.I., A novel amperometric biosensor based on a co-crosslinked l-lysine-Aoxidase/overoxidized polypyrrole bilayer for the highly selective determination of l-lysine (2013) Anal. Chim. Acta, 795, pp. 52-59
  • Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Formation of redox-Active self-Assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-Assembly solvent on the signal generation (2015) Bioelectrochemistry, 105, pp. 117-122
  • Palermo, V., Morelli, S., Simpson, C., Mullen, K., Samori, P., Self-Organized nanofibers from a giant nanographene: Effect of solvent and deposition method (2006) J. Mater. Chem, 16, pp. 266-271
  • Lena, S., Brancolini, G., Gottarelli, G., Mariani, P., Masiero, S., Venturini, A., Palermo, V., Spada, G.P., Self-Assembly of an alkylated guanosine derivative into ordered supramolecular nanoribbons in solution and on solid surfaces (2007) Chem. - Eur. J, 13, pp. 3757-3764
  • De Luca, G., Pisula, W., Credgington, D., Treossi, E., Fenwick, O., Lazzerini, G.M., Dabirian, R., Samorì, P., Non-Conventional processing and post-processing methods for the nanostructuring of conjugated materials for organic electronics (2011) Adv. Funct. Mater, 21, pp. 1279-1295
  • Danilowicz, C., Corton, E., Battaglini, F., Osmium complexes bearing functional groups: Building blocks for integrated chemical systems (1998) J. Electroanal. Chem, 445, pp. 89-94
  • Kiely, C.J., Fink, J., Brust, M., Bethell, D., Schiffrin, D.J., Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters (1998) Nature, 396, pp. 444-446
  • Sader, J.E., Sanelli, J.A., Adamson, B.D., Monty, J.P., Wei, X., Crawford, S.A., Friend, J.R., Bieske, E.J., Spring constant calibration of atomic force microscope cantilevers of arbitrary shape (2012) Rev. Sci. Instrum, 83, p. 103705
  • Thünemann, A.F., Müller, M., Dautzenberg, H., Joanny, J.F., Löwen, H., Polyelectrolyte complexes (2004) Adv. Polym. Sci, 166, pp. 113-171
  • Thünemann, A.F., General, S., Nanoparticles of a polyelectrolyte- fatty acid complex: Carriers for Q10 and triiodothyronine (2001) J. Controlled Release, 75, pp. 237-247
  • Antonietti, M., Conrad, J., Thünemann, A., Polyelectrolyte- Surfactant complexes: A new type of solid, mesomorphous material (1994) Macromolecules, 27, pp. 6007-6011
  • Bolze, J., Takahasi, M., Mizuki, J., Baumgart, T., Knoll, W., XRay Reflectivity and diffraction studies on lipid and lipopolymer langmuir-blodgett films under controlled humidity (2002) J. Am. Chem. Soc, 124, pp. 9412-9421
  • Cortez, M.L., Cukierman, A.L., Battaglini, F., Surfactant presence in a multilayer polyelectrolyte-enzyme system improves its catalytic response (2009) Electrochem. Commun, 11, pp. 990-993
  • Holly, F.J., Novel methods of studying polymer surfaces by employing contact angle goniometry (1983) Physicochemical Aspects of Polymer Surfaces, 1, pp. 141-154. , Mittal, K. L. Ed. Plenum Press: New York
  • Chen, W., McCarthy, T.J., Layer-by-Layer deposition: A tool for polymer surface modification (1997) Macromolecules, 30, pp. 78-86

Citas:

---------- APA ----------
Cortez, M.L., Ceolín, M., Camacho, L.C., Donath, E., Moya, S.E., Battaglini, F. & Azzaroni, O. (2017) . Solvent effects on the structure-property relationship of redox-Active self-Assembled nanoparticle-polyelectrolyte-surfactant composite thin films: Implications for the generation of bioelectrocatalytic signals in enzyme-containing assemblies. ACS Applied Materials and Interfaces, 9(1), 1119-1128.
http://dx.doi.org/10.1021/acsami.6b13456
---------- CHICAGO ----------
Cortez, M.L., Ceolín, M., Camacho, L.C., Donath, E., Moya, S.E., Battaglini, F., et al. "Solvent effects on the structure-property relationship of redox-Active self-Assembled nanoparticle-polyelectrolyte-surfactant composite thin films: Implications for the generation of bioelectrocatalytic signals in enzyme-containing assemblies" . ACS Applied Materials and Interfaces 9, no. 1 (2017) : 1119-1128.
http://dx.doi.org/10.1021/acsami.6b13456
---------- MLA ----------
Cortez, M.L., Ceolín, M., Camacho, L.C., Donath, E., Moya, S.E., Battaglini, F., et al. "Solvent effects on the structure-property relationship of redox-Active self-Assembled nanoparticle-polyelectrolyte-surfactant composite thin films: Implications for the generation of bioelectrocatalytic signals in enzyme-containing assemblies" . ACS Applied Materials and Interfaces, vol. 9, no. 1, 2017, pp. 1119-1128.
http://dx.doi.org/10.1021/acsami.6b13456
---------- VANCOUVER ----------
Cortez, M.L., Ceolín, M., Camacho, L.C., Donath, E., Moya, S.E., Battaglini, F., et al. Solvent effects on the structure-property relationship of redox-Active self-Assembled nanoparticle-polyelectrolyte-surfactant composite thin films: Implications for the generation of bioelectrocatalytic signals in enzyme-containing assemblies. ACS Appl. Mater. Interfaces. 2017;9(1):1119-1128.
http://dx.doi.org/10.1021/acsami.6b13456