Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Spheres, tubes, and planar-shaped nanomaterials as Fe3O4 nanoparticles (MNPs), multiwalled carbon nanotubes (MWCNT), and graphene oxide (GO) were used for the first time to treat microfluidic paper-based analytical devices (μPADs) and create a biocompatible layer with high catalytic surface. Once glucose measurements are critical for diabetes or glycosuria detection and monitoring, the analytical performance of the proposed devices was studied by using bienzymatic colorimetric detection of this carbohydrate. The limit of detection values achieved for glucose with μPADs treated with MNPs, MWCNT, and GO were 43, 62, and 18 μM, respectively. The paper surface modification solves problems associated with the lack of homogeneity on color measurements that compromise the sensitivity and detectability levels in clinical diagnosis. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide
Autor:Figueredo, F.; Garcia, P.T.; Cortón, E.; Coltro, W.K.T.
Filiación:Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:carbon nanotubes; cellulose; clinical diagnostics; colorimetric biosensors; digital image analysis; magnetic nanoparticles; paper microfluidics; Analytic equipment; Biocompatibility; Carbon; Carbon nanotubes; Cellulose; Color; Colorimetric analysis; Colorimetry; Diagnosis; Digital microfluidics; Glucose; Graphene; Microfluidics; Nanomagnetics; Nanoparticles; Nanotubes; Surface treatment; Yarn; Analytical performance; Clinical diagnostics; Colorimetric biosensors; Colorimetric detection; Digital image analysis; Magnetic nano-particles; Micro-fluidic devices; Paper-based analytical devices; Multiwalled carbon nanotubes (MWCN); Colorimetry; Electrical Papers; Iron Compounds; Sensors; carbon nanotube; ferric ion; ferric oxide; glucose; graphite; nanoparticle; chemistry; color; human; lab on a chip; paper; Color; Ferric Compounds; Glucose; Graphite; Humans; Lab-On-A-Chip Devices; Nanoparticles; Nanotubes, Carbon; Paper
Año:2016
Volumen:8
Número:1
Página de inicio:11
Página de fin:15
DOI: http://dx.doi.org/10.1021/acsami.5b10027
Título revista:ACS Applied Materials and Interfaces
Título revista abreviado:ACS Appl. Mater. Interfaces
ISSN:19448244
CAS:ferric ion, 20074-52-6; ferric oxide, 1309-37-1, 56449-54-8; glucose, 50-99-7, 84778-64-3; graphite, 7782-42-5; Ferric Compounds; ferric oxide; Glucose; Graphite; Nanotubes, Carbon
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19448244_v8_n1_p11_Figueredo

Referencias:

  • Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B., Casey, B.J., Oh, E., Stewart, M.H., Medintz, I.L., Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology (2013) Chem. Rev., 113, pp. 1904-2074
  • Oliveira, O.N., Jr., Iost, R.M., Siqueira, J.R., Jr., Crespilho, F.N., Caseli, L., Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular Recognition (2014) ACS Appl. Mater. Interfaces, 6, pp. 14745-14766
  • Scida, K., Stege, P.W., Haby, G., Messina, G.A., Garcia, C.D., Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review (2011) Anal. Chim. Acta, 691, pp. 6-17
  • Gupta, V.K., Atar, N., Yola, M.L., Eryllmaz, M., Torul, H., Tamer, U., Boyacl, I.H., Üstündaʇ, Z., A Novel Glucose Biosensor Platform Based on Ag@AuNPs Modified Graphene Oxide Nanocomposite and SERS Application (2013) J. Colloid Interface Sci., 406, pp. 231-237
  • Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M., Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays (2007) Angew. Chem., Int. Ed., 46, pp. 1318-1320
  • Cate, D.M., Adkins, J.A., Mettakoonpitak, J., Henry, C.S., Recent Developments in Paper-Based Microfluidic Devices (2015) Anal. Chem., 87, pp. 19-41
  • Ferreira, D.C.M., Giordano, G.F., Soares, C.C.S.P., De Oliveira, J.F.A., Mendes, R.K., Piazzetta, M.H., Gobbi, A.L., Cardoso, M.B., Optical Paper-Based Sensor for Ascorbic Acid Quantification Using Silver Nanoparticles (2015) Talanta, 141, pp. 188-194
  • Ornatska, M., Sharpe, E., Andreescu, D., Andreescu, S., Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes (2011) Anal. Chem., 83, pp. 4273-4280
  • Kumar, A., Hens, A., Arun, R.K., Chatterjee, M., Mahato, K., Layek, K., Chanda, N., A Paper Based Microfluidic Device for Easy Detection of Uric Acid Using Positively Charged Gold Nanoparticles (2015) Analyst, 140, pp. 1817-1821
  • Liang, P., Yu, H., Guntupalli, B., Xiao, Y., Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles (2015) ACS Appl. Mater. Interfaces, 7, pp. 15023-15030
  • Nath, P., Arun, R.K., Chanda, N., A Paper Based Microfluidic Device for the Detection of Arsenic Using a Gold Nanosensor (2014) RSC Adv., 4, pp. 59558-59561
  • Tsai, T.-T., Shen, S.-W., Cheng, C.-M., Chen, C.-F., Paper-Based Tuberculosis Diagnostic Devices with Colorimetric Gold Nanoparticles (2013) Sci. Technol. Adv. Mater., 14, p. 044404
  • Pourreza, N., Golmohammadi, H., Application of Curcumin Nanoparticles in a Lab-On-Paper Device as a Simple and Green pH Probe (2015) Talanta, 131, pp. 136-141
  • Evans, E., Gabriel, E.F.M., Benavidez, T.E., Coltro, W.K.T., Garcia, C.D., Modification of Microfluidic Paper-Based Devices with Silica Nanoparticles (2014) Analyst, 139, pp. 5560-5567
  • Barsan, M.M., Ghica, M.E., Brett, C.M.A., Electrochemical Sensors and Biosensors Based on Redox Polymer/Carbon Nanotube Modified Electrodes: A Review (2015) Anal. Chim. Acta, 881, pp. 1-23
  • Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of Carbon Nanotubes (2006) Chem. Rev., 106, pp. 1105-1136
  • Feng, W., Ji, P., Enzymes Immobilized on Carbon Nanotubes (2011) Biotechnol. Adv., 29, pp. 889-895
  • Shemetov, A.A., Nabiev, I., Sukhanova, A., Molecular Interaction of Proteins and Peptides with Nanoparticles (2012) ACS Nano, 6, pp. 4585-4602
  • Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S., Graphene Oxide as a Matrix for Enzyme Immobilization (2010) Langmuir, 26, pp. 6083-6085
  • Rossi, L.M., Quach, A.D., Rosenzweig, Z., Glucose Oxidase-Magnetite Nanoparticle Bioconjugate for Glucose Sensing (2004) Anal. Bioanal. Chem., 380, pp. 606-613
  • Khoshnevisan, K., Bordbar, A.K., Zare, D., Davoodi, D., Noruzi, M., Barkhi, M., Tabatabaei, M., Immobilization of Cellulase Enzyme on Superparamagnetic Nanoparticles and Determination of its Activity and Stability (2011) Chem. Eng. J., 171, pp. 669-673
  • Dong, Y.L., Zhang, H.G., Rahman, Z.U., Su, L., Chen, X.J., Hu, J., Chen, X.G., Graphene Oxide-Fe3O4 Magnetic Nanocomposites with Peroxidase-Like Activity for Colorimetric Detection of Glucose (2012) Nanoscale, 4, pp. 3969-3976
  • Wei, H., Wang, E., Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection (2008) Anal. Chem., 80, pp. 2250-2254
  • Henstridge, M.C., Compton, R.G., Mass Transport to Micro and Nanoelectrodes and Their Arrays: A Review (2012) Chem. Rec., 12, pp. 63-71
  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications (2008) Chem. Rev., 108, pp. 2064-2110
  • Qi, H., Liu, J., Mäder, E., Smart Cellulose Fibers Coated with Carbon Nanotube Networks (2014) Fibers, 2, pp. 295-307
  • Chauhan, I., Aggrawal, S., Mohanty, C., Mohanty, P., Metal Oxides Nanostructures Incorporated/Inmovilized Paper Matrices and Their Applications: A Review (2015) RSC Adv., 5, pp. 83036-83055
  • Bahadir, E.B., Sezgintürk, M.K., Applications of Commercial Biosensors in Clinical, Food, Environmental and Biothreat/Biowarfare Analyses (2015) Anal. Biochem., 478, pp. 107-120
  • McPherson, R.A., Pincus, M.R., (2011) Henry's Clinical Diagnosis and Management by Laboratory Methods, , 22 nd ed; Elsevier Saunders: Philadelphia
  • Rauf, S., Ihsan, A., Akhtar, K., Ghauri, M.A., Rahman, M., Anwar, M.A., Khalid, A.M., Glucose Oxidase Immobilization on a Novel Cellulose Acetate-Polymethylmethacrylate Membrane (2006) J. Biotechnol., 121, pp. 351-360

Citas:

---------- APA ----------
Figueredo, F., Garcia, P.T., Cortón, E. & Coltro, W.K.T. (2016) . Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide. ACS Applied Materials and Interfaces, 8(1), 11-15.
http://dx.doi.org/10.1021/acsami.5b10027
---------- CHICAGO ----------
Figueredo, F., Garcia, P.T., Cortón, E., Coltro, W.K.T. "Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide" . ACS Applied Materials and Interfaces 8, no. 1 (2016) : 11-15.
http://dx.doi.org/10.1021/acsami.5b10027
---------- MLA ----------
Figueredo, F., Garcia, P.T., Cortón, E., Coltro, W.K.T. "Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide" . ACS Applied Materials and Interfaces, vol. 8, no. 1, 2016, pp. 11-15.
http://dx.doi.org/10.1021/acsami.5b10027
---------- VANCOUVER ----------
Figueredo, F., Garcia, P.T., Cortón, E., Coltro, W.K.T. Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide. ACS Appl. Mater. Interfaces. 2016;8(1):11-15.
http://dx.doi.org/10.1021/acsami.5b10027