Artículo

Lee, H.-S.; Han, W.; Chung, H.-Y.; Rozenberg, M.; Kim, K.; Lee, Z.; Yeom, G.Y.; Park, H.-H. "Ferroelectric Tunnel Junction for Dense Cross-Point Arrays" (2015) ACS Applied Materials and Interfaces. 7(40):22348-22354
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cross-point array (CPA) structure memories using a memristor are attracting a great deal of attention due to their high density integration with a 4F2 cell. However, a common significant drawback of the CPA configuration is crosstalk between cells. To date, the CPA structure using a redox-based memristor has restrictions to minimize the operating current level due to their resistive switching mechanism. This study demonstrates suitable characteristics of a ferroelectric tunnel junction (FTJ) for the memristor of the CPA structure using an electrostatic model. From the FTJ of the Au/p-type Pr0.98Ca0.02MnO3 (4 nm)/ BaTiO3 (4.3 nm)/n-type Ca0.98Pr0.02MnO3 (3 nm)/ Pt(111) structure, which has a higher and thicker potential barrier, a good memristive effect for the CPA structure with a high nonlinear current-voltage curve and low current operation, was obtained by Δ Fowler-Nordheim tunneling with effectively blocked direct tunneling and thermionic emission. The FTJ demonstrated reduced sneak current and the possible for high nonlinearity. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Ferroelectric Tunnel Junction for Dense Cross-Point Arrays
Autor:Lee, H.-S.; Han, W.; Chung, H.-Y.; Rozenberg, M.; Kim, K.; Lee, Z.; Yeom, G.Y.; Park, H.-H.
Filiación:Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul, 120-749, South Korea
Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud, Orsay, 91405, France
IFIBA-Conicet, Departamento de Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pabellón i, Buenos Aires, 1428, Argentina
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
Department of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, Kyunggi-do, 440-746, South Korea
Palabras clave:cross point array structure; ferroelectric tunnel junction; memristor; perovskite manganite family; sneak current; Barium compounds; Calcium; Ferroelectricity; Flash memory; Manganese oxide; Memristors; Passive filters; Thermionic emission; Cross-point array; Ferroelectric tunnel junctions; Memristor; Perovskite manganites; Sneak currents; Tunnel junctions
Año:2015
Volumen:7
Número:40
Página de inicio:22348
Página de fin:22354
DOI: http://dx.doi.org/10.1021/acsami.5b06117
Título revista:ACS Applied Materials and Interfaces
Título revista abreviado:ACS Appl. Mater. Interfaces
ISSN:19448244
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19448244_v7_n40_p22348_Lee

Referencias:

  • Garcia, V., Bibes, M., Ferroelectric Tunnel Junctions for Information Storage and Processing (2014) Nat. Commun., 5, p. 4289
  • Ramesh, R., Spaldin, N.A., Multiferroics: Progress and Prospects in Thin Films (2007) Nat. Mater., 6, pp. 21-29
  • Wuttig, M., Phase-Change Materials: Towards a Universal Memory? (2005) Nat. Mater., 4, pp. 265-266
  • Chappert, C., Fert, A., Van Dau, F.N., The Emergence of Spin Electronics in Data Storage (2007) Nat. Mater., 6, pp. 813-823
  • Waser, R., Dittmann, R., Staikov, G., Szot, K., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges (2009) Adv. Mater., 21, pp. 2632-2663
  • Rozenberg, M.J., Resistive Switching (2011) Scholarpedia, 6, p. 11414
  • Szot, K., Speier, W., Bihlmayer, G., Waser, R., Switching the Electrical Resistance of Individual Dislocations in Single-Crystalline SrTiO3 (2006) Nat. Mater., 5, pp. 312-320
  • Linn, E., Rosezin, R., Kügeler, C., Waser, R., Complementary Resistive Switches for Passive Nanocrossbar Memories (2010) Nat. Mater., 9, pp. 403-406
  • Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, K., A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric Ta2O5-x/TaO2-x Bilayer Structures (2011) Nat. Mater., 10, pp. 625-630
  • Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices (2008) Nat. Nanotechnol., 3, pp. 429-433
  • Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., Park, S., Hwang, H., High Current Density and Nonlinearity Combination of Selection Device Based on TaOx/TiO2/TaOx Structure for One Selector-One Resistor Arrays (2012) ACS Nano, 6, pp. 8166-8172
  • Yoon, J.H., Song, S.J., Yoo, I.-H., Seok, J.Y., Yoon, K.J., Kwon, D.E., Park, T.H., Hwang, C.S., Highly Uniform, Electroforming-Free, and Self-Rectifying Resistive Memory in the Pt/Ta2O5/HfO2-x/TiN Structure (2014) Adv. Funct. Mater., 24, pp. 5086-5095
  • Pantel, D., Alexe, M., Electroresistance Effects in Ferroelectric Tunnel Barriers (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 82, p. 134105
  • Gruverman, A., Wu, D., Lu, H., Wang, Y., Jang, H.W., Folkman, C.M., Zhuravlev, M.Y., Tsymbal, E.Y., Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale (2009) Nano Lett., 9, pp. 3539-3543
  • Fowler, R.H., Nordheim, L., Electron Emission in Intense Electric Fields (1928) Proc. R. Soc. London, Ser. A, 119, pp. 173-181
  • Sze, S.M., (2007) Physics of Semiconductor Devices, , 3 rd ed. Wiley-Interscience: Hoboken, NJ
  • Kohlstedt, H., Pertsev, N.A., Rodriguez Contreras, J., Waser, R., Theoretical Current-Voltage Characteristics of Ferroelectric Tunnel Junctions (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 125341
  • Zhuravlev, M.Y., Sabirianov, R.F., Jaswal, S.S., Tsymbal, E.Y., Giant Electroresistance in Ferroelectric Tunnel Junctions (2005) Phys. Rev. Lett., 94, p. 246802
  • Chanthbouala, A., Crassous, A., Garcia, V., Bouzehouane, K., Fusil, S., Moya, X., Allibe, J., Barthélémy, A., Solid-State Memories Based on Ferroelectric Tunnel Junctions (2011) Nat. Nanotechnol., 7, pp. 101-104
  • Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Grollier, J., A Ferroelectric Memristor (2012) Nat. Mater., 11, pp. 860-864
  • Soni, R., Petraru, A., Meuffels, P., Vavra, O., Ziegler, M., Kim, S.K., Jeong, D.S., Kohlstedt, H., Giant Electrode Effect on Tunneling Electroresistance in Ferroelectric Tunnel Junctions (2014) Nat. Commun., 5, p. 5414
  • Pantel, D., Goetze, S., Hesse, D., Alexe, M., Room-Temperature Ferroelectric Resistive Switching in Ultrathin Pb(Zr0.2Ti0.8)O3 Films (2011) ACS Nano, 5, pp. 6032-6038
  • Dagotto, E., (2003) Nanoscale Phase Separation and Colossal Magnetoresistance, , Springer-Verlag: Berlin Heidelberg
  • Salamon, M.B., Jaime, M., The Physics of Manganites: Structure and Transport (2001) Rev. Mod. Phys., 73, pp. 583-628
  • Wadati, H., Maniwa, A., Chikamatsu, A., Ohkubo, I., Kumigashira, H., Oshima, M., Fujimori, A., Koinuma, H., In Situ Photoemission Study of Pr1-xCaxMnO3 Epitaxial Thin Films with Suppressed Charge Fluctuations (2008) Phys. Rev. Lett., 100, p. 026402
  • Satpathy, S., Popović, Z.S., Vukajlović, F.R., Electronic Structure of the Perovskite Oxides: La1-xCaxMnO3 (1996) Phys. Rev. Lett., 76, pp. 960-963
  • Raabe, S., Mierwaldt, D., Ciston, J., Uijttewaal, M., Stein, H., Hoffmann, J., Zhu, Y., Jooss, C., In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites (2012) Adv. Funct. Mater., 22, pp. 3378-3388
  • Jooss, Ch., Wu, L., Beetz, T., Klie, R.F., Beleggia, M., Schofield, M.A., Schramm, S., Zhu, Y., Polaron Melting and Ordering as Key Mechanisms for Colossal Resistance Effects in Manganites (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13597-13602
  • Jooss, Ch., Hoffmann, J., Fladerer, J., Ehrhardt, M., Beetz, T., Wu, L., Zhu, Y., Electric Pulse Induced Resistance Change Effect in Manganites due to Polaron Localization at the Metal-Oxide Interfacial Region (2008) Phys. Rev. B: Condens. Matter Mater. Phys., 77, p. 132409
  • Lee, H.S., Choi, S.G., Park, H.-H., Rozenberg, M.J., A New Route to the Mott-Hubbard Metal-Insulator Transition: Strong Correlations Effects in Pr0.7Ca0.3MnO3 (2013) Sci. Rep., 3, p. 1704
  • Stengel, M., Spaldin, N.A., Origin of the Dielectric Dead Layer in Nanoscale Capacitors (2006) Nature, 443, pp. 679-682
  • Sinnamon, L.J., Bowman, R.M., Gregg, J.M., Investigation of Dead-Layer Thickness in SrRuO3/Ba0.5Sr0.5TiO3/Au Thin-Film Capacitors (2001) Appl. Phys. Lett., 78, p. 1724
  • Zhou, C., Newns, D.M., Intrinsic Dead Layer Effect and the Performance of Ferroelectric Thin Film Capacitors (1997) J. Appl. Phys., 82, p. 3081
  • Sun, P., Wu, Y.-Z., Cai, T.-Y., Ju, S., Effects of Ferroelectric Dead Layer on the Electron Transport in Ferroelectric Tunneling Junctions (2011) Appl. Phys. Lett., 99, p. 052901
  • Peressi, M., Binggeli, N., Baldereschi, A., Band Engineering at Interfaces: Theory and Numerical Experiments (1998) J. Phys. D: Appl. Phys., 31, pp. 1273-1299
  • Liu, C.-T., Zheng, Y., Wang, B., Chen, W.-J., Prediction of Ferroelectric Stability and Magnetoelectric Effect of Asymmetric Multiferroic Tunnel Junctions (2013) Appl. Phys. Lett., 102, p. 152906
  • Chen, W.-J., Zheng, Y., Luo, X., Wang, B., Woo, C.-H., Ab Initio Study on the Size Effect of Symmetric and Asymmetric Ferroelectric Tunnel Junctions: A Comprehensive Picture with Regard to the Details of Electrode/Ferroelectric Interfaces (2013) J. Appl. Phys., 114, p. 064105
  • Umeno, Y., Albina, J.-M., Meyer, B., Elsässer, C., Ab Initio Calculations of Ferroelectric Instability in PbTiO3 Capacitors with Symmetric and Asymmetric Electrode Layers (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 80, p. 205122
  • Minohara, M., Yasuhara, R., Kumigashira, H., Oshima, M., Termination Layer Dependence of Schottky Barrier Height for La0.6Sr0.4MnO3 /Nb:SrTiO3 Heterojunctions (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 81, p. 235322
  • Bilc, D.I., Novaes, F.D., Íňiguez, J., Ordejón, P., Ghosez, P., Electroresistance Effect in Ferroelectric Tunnel Junctions with Symmetric Electrodes (2012) ACS Nano, 6, pp. 1473-1478
  • Sun, P., Wu, Y.-Z., Zhu, S.-H., Cai, T.-Y., Ju, S., Interfacial Dead Layer Effects on Current-Voltage Characteristics in Asymmetric Ferroelectric Tunnel Junctions (2013) J. Appl. Phys., 113, p. 174101
  • Liu, Y., Lou, X., Bibes, M., Dkhil, B., Effect of a Built-In Electric Field in Asymmetric Ferroelectric Tunnel Junctions (2013) Phys. Rev. B: Condens. Matter Mater. Phys., 88, p. 024106
  • Amsinck, C.J., Di Spigna, N.H., Nackashi, D.P., Franzon, P.D., Scaling Constraints in Nanoelectronic Random-Access Memories (2005) Nanotechnology, 16, pp. 2251-2260
  • Huang, J.-J., Tseng, Y.-M., Hsu, C.-W., Hou, T.-H., Bipolar Nonlinear Selector for 1S1R Crossbar Array Applications (2011) IEEE Electron Device Lett., 32, pp. 1427-1429

Citas:

---------- APA ----------
Lee, H.-S., Han, W., Chung, H.-Y., Rozenberg, M., Kim, K., Lee, Z., Yeom, G.Y.,..., Park, H.-H. (2015) . Ferroelectric Tunnel Junction for Dense Cross-Point Arrays. ACS Applied Materials and Interfaces, 7(40), 22348-22354.
http://dx.doi.org/10.1021/acsami.5b06117
---------- CHICAGO ----------
Lee, H.-S., Han, W., Chung, H.-Y., Rozenberg, M., Kim, K., Lee, Z., et al. "Ferroelectric Tunnel Junction for Dense Cross-Point Arrays" . ACS Applied Materials and Interfaces 7, no. 40 (2015) : 22348-22354.
http://dx.doi.org/10.1021/acsami.5b06117
---------- MLA ----------
Lee, H.-S., Han, W., Chung, H.-Y., Rozenberg, M., Kim, K., Lee, Z., et al. "Ferroelectric Tunnel Junction for Dense Cross-Point Arrays" . ACS Applied Materials and Interfaces, vol. 7, no. 40, 2015, pp. 22348-22354.
http://dx.doi.org/10.1021/acsami.5b06117
---------- VANCOUVER ----------
Lee, H.-S., Han, W., Chung, H.-Y., Rozenberg, M., Kim, K., Lee, Z., et al. Ferroelectric Tunnel Junction for Dense Cross-Point Arrays. ACS Appl. Mater. Interfaces. 2015;7(40):22348-22354.
http://dx.doi.org/10.1021/acsami.5b06117