Artículo

Lago, L.S.; Saraceno, M.; Ruiz-Etcheverry, L.A.; Passaro, M.; Oreiro, F.A.; Donofrio, E.E.; Gonzalez, R.A. "Improved Sea Surface Height from Satellite Altimetry in Coastal Zones: A Case Study in Southern Patagonia" (2017) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 10(8):3493-3503
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

High-resolution 20-Hz Jason-2 satellite altimetry data obtained from crossing tracks numbered 52 and 189 in San Matias Gulf, Argentina, are compared with a 22-month-long time series of sea level measured by a bottom pressure recorder. It was deployed 1.3 km from the nominal intersection of the two tracks and 0.9 km from the coast. Results show that by improving retracking and tidal modeling, satellite altimetry data become more accurate close to the coast. Indeed, a larger number of reliable data are obtained up to 1.6 km from the coast when satellite data are retracked using adaptive leading edge subwaveform retracker (ALES) rather than using the classic Brown model. The tidal model that showed the lowest root sum square (RSS) of the difference between the in situ and the modeled tidal amplitude and phase is TPXO8 (RSS 4.8 cm). Yet, the lowest difference from in situ tidal constituents is obtained by harmonic analysis of the available 23-year-long 1-Hz altimetry dataset (RSS 4.1 cm), highlighting the potential of altimetry data to compute tides. Considering ALES retracking and TPXO8 tidal correction for the 20-Hz Jason-2 data, we finally show that it is possible to retrieve 70% more data and to improve correlation with in situ measurements from 0.79 to 0.95. The sea level anomaly obtained this way has a root mean square difference from in situ data of only 13 cm as close as 4 km from the coast. Overall, the analysis performed indicates that satellite altimetry data can be greatly improved, even in complex macrotidal coastal regions. © 2008-2012 IEEE.

Registro:

Documento: Artículo
Título:Improved Sea Surface Height from Satellite Altimetry in Coastal Zones: A Case Study in Southern Patagonia
Autor:Lago, L.S.; Saraceno, M.; Ruiz-Etcheverry, L.A.; Passaro, M.; Oreiro, F.A.; Donofrio, E.E.; Gonzalez, R.A.
Filiación:Departamento de Ciencias de la Atmosfera y Los Oceanos, Universidad de Buenos Aires, Centro de Investigacíon Del Mar y la Atḿosfera, Buenos Aires, 1428, Argentina
Unidad Mixta Internacional-Instituto Franco-Argentinosobre Estudiosde Clima y Sus Impactos, UMI-3351, Buenos Aires, 1428, Argentina
International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, HI 96822, United States
Deutsches Geodatisches Forschungsinstitut der Technischen Universitat Munchen, Munchen, 80333, Germany
Departamento de Oceanografia, Servicio de Hidrografia Naval, Buenos Aires, 2124, Argentina
Facultad de Ingenieŕia, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
CONICET-Escuela Superior de Ciencias Marinas, Instituto de Bioloǵia Marina y Pesquera Almirante Storni, Universidad Nacional Del Comahue, Rio Negro, 8300, Argentina
Palabras clave:Along-track; bottom pressure recorder (BPR); coastal altimetry; Jason-2; macrotidal regime; Patagonia Argentine; San Matias Gulf (SMG); satellite altimetry accuracy; sea level anomaly (SLA); Aneroid altimeters; Coastal zones; Sea level; Surface waters; Along-track; Bottom pressure recorders; coastal altimetry; Jason-2; Macrotidal; Patagonia; San Matias Gulf (SMG); Satellite altimetry; Sea level anomaly; Geodetic satellites; amplitude; coastal zone; satellite altimetry; satellite data; satellite mission; sea level; sea surface height; Argentina; Atlantic Ocean; Patagonia; San Matias Gulf
Año:2017
Volumen:10
Número:8
Página de inicio:3493
Página de fin:3503
DOI: http://dx.doi.org/10.1109/JSTARS.2017.2694325
Título revista:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Título revista abreviado:IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
ISSN:19391404
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19391404_v10_n8_p3493_Lago

Referencias:

  • Andersen, O.B., Scharroo, R., Range and geophysical corrections in coastal regions: And implications for mean sea surface determination (2011) Coastal Altimetry, pp. 103-145. , S. Vignudelli, A. G. Kostianoy, P. Cipollini, and J. Benveniste, Eds. Berlin, Germany: Springer-Verlag
  • Beier, E.J., Akaprahamyan, R., Variación estacional de la circu-lación inducida por el viento en el Golfo San Matias aplicando el modelo Cox/CIMA (1991) 4th Jornadas Nacionales de Ciencias Del Mar, , Madryn, Argentina
  • Brooks, R.L., Lockwood, D.W., Lee, J.E., Handcock, D., Hayne, G.S., Land effects on TOPEX radar altimeter measurements in Pacific Rim coastal zones (1998) Remote Sensing of the Pacific by Satellites, pp. 175-198. , R. A. Brown, Ed. Corvallis, OR, USA: Earth Ocean and Space
  • Brown, G., The average impulse response of a rough surface and its applications (1997) IEEE Trans. Antennas Propag., 25 (1), pp. 67-74. , Jan
  • Burrage, D.M., Steinberg, C.R., Mason, L.B., Bode, L., Tidal corrections for TOPEX altimetry in the Coral Sea and Great Barrier Reef Lagoon: Comparisons with long-term tide gauge records (2003) J. Geophysical Res., Oceans, 108, pp. 3401-3421
  • Carrère, L., Lyard, F., Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-Comparisons with ob-servations (2003) Geophys. Res. Lett., 30 (6)
  • Carrère, L., Lyard, F., Cancet, M., Guillot, A., Roblou, L., FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry (2012) Meeting 20 Years Altimetry, , Venice, Italy
  • Carreto, J.I., Casal, A.B., Hinojal, A., Laborde, M.A., Verona, C.A., (1974) Fitoplancton Pigmentosy Condiciones Ecológicas Del Golfo San Matias, , Instituto de Bioloǵia Marina de Mar del Plata, Mar del Plata, Argentina, Informe 10
  • Cartwright, D.E., Tidal prediction and modern time scales (1985) Int. Hydrogr. Rev., 62 (1), pp. 127-138
  • Cipollini, P., The role of altimetry in coastal observing systems (2010) Proc. Ocean Obs., 9, pp. 181-191
  • Codiga, D.L., (2011) Unified Tidal Analysis and Prediction Using the UTide Matlab Functions, , Graduate School Oceanogr., Univ. Rhode Island, Nar-ragansett, RI, USA, Tech. Rep. 01
  • Egbert, G.D., Erofeeva, S.Y., Efficient inverse modeling of barotropic ocean tides (2002) J. Atmosph. Ocean. Technol., 19 (2), pp. 183-204
  • Gómez-Enri, J., Cipollini, P., Passaro, M., Vignudelli, S., Tejedor, B., Coca, J., Coastal altimetry products in the strait of Gibraltar (2016) IEEE Trans. Geosci. Remote Sens., 54 (9), pp. 5455-5466. , Sep
  • Gommenginger, C., Retracking altimeter waveforms near the coasts (2011) Coastal Altimetry, pp. 61-101. , Berlin, Germany: Springer-Verlag
  • González, R.A., Narvarte, M.A., Caille, G.M., An assessment of the sustainability of the hake Merluccius hubbsi artisanal fishery in San Matias Gulf, Patagonia, Argentina (2007) Fisheries Res., 87 (1), pp. 58-67
  • Guerrero, R.A., Piola, A.R., Water masses in the continental shelf (1997) Argentine Sea Fisheries Resour., 1, pp. 107-118
  • Idris, N.H., Deng, X., Andersen, O.B., The importance of coastal altimetry retracking and detiding: A case study around the Great Barrier Reef (2014) Int. J. Remote Sens., 35 (5), pp. 1729-1740
  • The international thermodynamic equation of seawater-2010: Calculation and use of thermodynamic properties (2010) In-tergovernmental Oceanographic Commission, Manuals and Guides 56, p. 196. , http://www.TEOS-10.org, IOC, SCOR and IAPSO UNESCO (English) [Online]
  • Kalnay, E., The NCEP/NCAR 40-year reanalysis project (1996) Bull. Amer. Meteorol. Soc., 77 (3), pp. 437-471
  • Laiz, I., Gómez-Enri, J., Tejedor, B., Aboitiz, A., Villares, P., Seasonal sea level variations in the gulf of Cadiz continental shelf from in situ measurements and satellite altimetry (2013) Continental Shelf Res., 53, pp. 77-88
  • Leng, L., Zhang, T., Kleinman, L., Zhu, W., Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science (2007) J. Phys., 78 (1)
  • Moreira, D., Simionato, C.G., Dragani, W., Modeling ocean tides and their energetics in the North Patagonia Gulfs of Argentina (2011) J Coastal Res., 27 (1), pp. 87-102
  • Oreiro, F.A., D'Onofrio, E.E., Grismeyer, W.H., Fiore, M.M.E., Saraceno, M., Comparison of tide model outputs for the northern region of the Antarctic Peninsula using satellite altimeters and tide gauge data (2014) Polar Sci., 8, pp. 10-23
  • (2015) OSTM/Jason-2 Products Handbook, 400 (1). , CNES: SALP-MU-M-OP-15815-CN, EUMETSAT: EUM/OPS-JAS/MAN/08/0041, JPL: OSTM-29-1237, NOAA/NESDIS: Polar Series/OSTM J
  • Palma, E.D., Matano, R.P., Piola, A.R., A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing (2004) J. Geophysical Res., Oceans, 109 (8)
  • Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G.D., Snaith, H.M., ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry (2014) Remote Sens. Environ., 45, pp. 173-189
  • Passaro, M., Cipollini, P., Benveniste, J., Annual sea level variability of the coastal ocean: The Baltic Sea-North Sea transition zone (2015) J. Geophysical Res., Oceans, 120 (4), pp. 3061-3078
  • Piola, A.R., Scasso, L.M., Circulación en el golfo San Matias (1988) Geoacta, 15 (1), pp. 33-51
  • Pugh, D.T., (1987) Tides Surges and Mean Sea-Level, , Chichester U.K.: Wiley
  • Pugh, D.T., (2004) Changing Sea Levels: Effects of Tides, Weather and Climate, , Cambridge, U.K.: Cambridge Univ. Press
  • Puissant, A., Lefevre, S., Weber, J., Coastline extraction in VHR imagery using mathematical morphology with spatial and spectral knowledge (2008) Proc. SPRS Congr., Beijing, China, pp. 1305-1310
  • Richter, A., Pressure tide gauge records from the Atlantic shelf off Tierra del Fuego southernmost South America (2012) Continental Shelf Res., 42, pp. 20-29
  • Etcheverry, L.A.R., Saraceno, M., Piola, A.R., Valladeau, G., Moller, O.O., A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges (2015) Continental Shelf Res., 92, pp. 87-97
  • Saraceno, M., D'Onofrio, E.E., Fiore, M.E.E., Grismeyer, W.H., Tide model comparison over the Southwestern Atlantic Shelf (2010) Continental Shelf Res., 30 (17), pp. 1865-1875
  • Saraceno, M., Simionato, C.G., Ruiz-Etcheverry, L.A., Sea surface height trend and variability at seasonal and interannual time scales in the Southeastern South American continental shelf between 27° S and 40° S (2014) Continental Shelf Res., 91, pp. 82-94
  • Savcenko, R., Bosch, W., EOT08a-A new global ocean tide model derived by empirical analysis of multi-mission altimetry data (2008) Geophysical Res. Abstr., 10. , 7470
  • Schaeffer, P., Faugere, Y., Legeais, J.F., Ollivier, A., Guinle, T., Picot, N., The CNES-CLS11 global mean sea surface computed from 16 years of satellite altimeter data (2012) Marine Geodesy, 35, pp. 3-19
  • Schureman, P., (1988) Manual of Harmonic Analysis and Prediction of Tides, , U.S. Dept. Commerce, Coast Geodetic Survey, Special Publication 98
  • Shih, H., Baer, L., Some errors in tide measurement caused by dynamic environment (1991) Tidal Hydrodynamics, pp. 641-671. , B. B. Parker, Ed. Hoboken, NJ, USA: Wiley
  • Simionato, C.G., Dragani, W., Nuñez, M., Enge, M., A set of 3-D nested models for tidal propagation from the argentinean continental shelf to the Ŕio de la Plata estuary-Part I. M2 (2004) J. Coastal Res., 20, pp. 893-912
  • Stammer, D., Accuracy assessment of global barotropic ocean tide models (2014) Rev. Geophys., 52 (3), pp. 243-282
  • Strub, P.T., Altimeter-derived seasonal circulation on the southwest Atlantic shelf: 27 °s-43 °s (2015) J. Geophys. Res. Oceans, 120, pp. 3391-3418
  • Testut, L., Unnikrishnan, A.S., Improving modeling of tides on the continental shelf off the west coast of India (2016) J. Coastal Res., 32 (1), pp. 105-115
  • Thomson, R.E., Emery, W.J., (2014) Data Analysis Methods in Physical Oceanography, , Boston, MA, USA: Newnes
  • Tonini, M.H., Palma, E.D., Piola, A.R., A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs (2013) Continental Shelf Res., 65, pp. 97-110
  • Torrence, C., Compo, G.P., A practical guide to wavelet analysis (1998) Bull. Amer. Meteorol. Soc., 79 (1), pp. 61-78
  • Vignudelli, S., Improved satellite altimetry in coastal systems: Case study of the Corsica Channel (Mediterranean Sea) (2015) Geophysical Res. Lett., 32 (7)
  • Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., (2011) Coastal Altimetry, , New York, NY USA: Springer Science & Business Media
  • Williams, G., Comparison of AVHRR and SeaWiFS imagery with fishing activity and in situ data in San Matias Gulf, Argentina (2010) Int. J. Remote Sens., 31 (17-18), pp. 4531-4542

Citas:

---------- APA ----------
Lago, L.S., Saraceno, M., Ruiz-Etcheverry, L.A., Passaro, M., Oreiro, F.A., Donofrio, E.E. & Gonzalez, R.A. (2017) . Improved Sea Surface Height from Satellite Altimetry in Coastal Zones: A Case Study in Southern Patagonia. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8), 3493-3503.
http://dx.doi.org/10.1109/JSTARS.2017.2694325
---------- CHICAGO ----------
Lago, L.S., Saraceno, M., Ruiz-Etcheverry, L.A., Passaro, M., Oreiro, F.A., Donofrio, E.E., et al. "Improved Sea Surface Height from Satellite Altimetry in Coastal Zones: A Case Study in Southern Patagonia" . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10, no. 8 (2017) : 3493-3503.
http://dx.doi.org/10.1109/JSTARS.2017.2694325
---------- MLA ----------
Lago, L.S., Saraceno, M., Ruiz-Etcheverry, L.A., Passaro, M., Oreiro, F.A., Donofrio, E.E., et al. "Improved Sea Surface Height from Satellite Altimetry in Coastal Zones: A Case Study in Southern Patagonia" . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 8, 2017, pp. 3493-3503.
http://dx.doi.org/10.1109/JSTARS.2017.2694325
---------- VANCOUVER ----------
Lago, L.S., Saraceno, M., Ruiz-Etcheverry, L.A., Passaro, M., Oreiro, F.A., Donofrio, E.E., et al. Improved Sea Surface Height from Satellite Altimetry in Coastal Zones: A Case Study in Southern Patagonia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017;10(8):3493-3503.
http://dx.doi.org/10.1109/JSTARS.2017.2694325