Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It is demonstrated that a compact monolayer of 1,2-dioleoyl-sn-glycero-3- phosphocholine adsorbed to a hanging mercury drop electrode can serve as a simple electrochemical model system to study biomembrane penetration by gold nanoparticles. The hydrogen redox-chemistry characteristic of ligand-stabilized gold nanoparticles in molecularly close contact with a mercury electrode is used as an indicator of membrane penetration. Results for water-dispersible gold nanoparticles of two different sizes are reported, and comparisons are made with the cellular uptake of the same preparations of nanoparticles by a common human fibroblast cell line. The experimental system described here can be used to study physicochemical aspects of membrane penetration in the absence of complex biological mechanisms, and it could also be a starting point for the development of a test bed for the toxicity of nanomaterials. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Interactions of gold nanoparticles with a phospholipid monolayer membrane on mercury
Autor:Gordillo, G.J.; Krpetić, Z.; Brust, M.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, 1428, Buenos Aires, Argentina
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
Palabras clave:electrochemistry; gold nanoparticles; membrane penetration; mercury electrode; nanotoxicology; phospholipid monolayer; Cell culture; Electrochemistry; Electrodes; Equipment testing; Gold; Mercury (metal); Monolayers; Phospholipids; Gold Nanoparticles; Membrane penetration; Mercury electrodes; Nanotoxicology; Phospholipid monolayers; Metal nanoparticles; 1,2-oleoylphosphatidylcholine; artificial membrane; gold; hydrogen; ligand; mercury; metal nanoparticle; phosphatidylcholine; phospholipid; adsorption; artificial membrane; chemistry; electrochemistry; electrode; fibroblast; HeLa cell line; human; metabolism; nanotechnology; oxidation reduction reaction; procedures; Adsorption; Electrochemistry; Electrodes; Fibroblasts; Gold; HeLa Cells; Humans; Hydrogen; Ligands; Membranes, Artificial; Mercury; Metal Nanoparticles; Nanotechnology; Oxidation-Reduction; Phosphatidylcholines; Phospholipids
Año:2014
Volumen:8
Número:6
Página de inicio:6074
Página de fin:6080
DOI: http://dx.doi.org/10.1021/nn501395e
Título revista:ACS Nano
Título revista abreviado:ACS Nano
ISSN:19360851
CAS:gold, 7440-57-5; hydrogen, 12385-13-6, 1333-74-0; mercury, 14302-87-5, 7439-97-6; phosphatidylcholine, 55128-59-1, 8002-43-5; 1,2-oleoylphosphatidylcholine; Gold; Hydrogen; Ligands; Membranes, Artificial; Mercury; Phosphatidylcholines; Phospholipids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19360851_v8_n6_p6074_Gordillo

Referencias:

  • Van Meer, G., Voelker, D.R., Feigenson, G.W., Membrane lipids: Where they are and how they behave (2008) Nature Reviews Molecular Cell Biology, 9 (2), pp. 112-124. , DOI 10.1038/nrm2330, PII NRM2330
  • Colvin, V.L., The potential environmental impact of engineered nanomaterials (2003) Nature Biotechnology, 21 (10), pp. 1166-1170. , DOI 10.1038/nbt875
  • Donaldson, K., Stone, V., Tran, C.L., Kreyling, W., Borm, P.J.A., Nanotoxicology (2004) Occupational and Environmental Medicine, 61 (9), pp. 727-728. , DOI 10.1136/oem.2004.013243
  • Conner, S.D., Schmid, S.L., Regulated portals of entry into the cell (2003) Nature, 422 (6927), pp. 37-44. , DOI 10.1038/nature01451
  • De La Fuente, J.M., Berry, C.C., Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus (2005) Bioconjugate Chemistry, 16 (5), pp. 1176-1180. , DOI 10.1021/bc050033+
  • Verma, A., Uzun, O., Hu, Y., Hu, Y., Han, H.-S., Watson, N., Chen, S., Stellacci, F., Surface-Structure-Regulated Cell-Membrane Penetration by Monolayer-Protected Nanoparticles (2008) Nat. Mater., 7, pp. 588-595
  • Nativo, P., Prior, I.A., Brust, M., Uptake and Intracellular Fate of Surface-Modified Gold Nanoparticles (2008) ACS Nano, 2, pp. 1639-1644
  • Lin, J., Zhang, H., Chen, Z., Zheng, Y., Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship (2010) ACS Nano, 4, pp. 5421-5429
  • Krpetic, Z., Saleemi, S., Prior, I.A., See, V., Qureshi, R., Brust, M., Negotiation of Intracellular Membrane Barriers by TAT-Modified Gold Nanoparticles (2011) ACS Nano, 5, pp. 5195-5201
  • Cioran, A.M., Musteti, A.D., Teixidor, F., Krpetic, Z., Prior, I.A., He, Q., Kiely, C.J., Vinas, C., Mercaptocarborane-Capped Gold Nanoparticles: Electron Pools and Ion Traps with Switchable Hydrophilicity (2012) J. Am. Chem. Soc., 134, pp. 212-221
  • Dubavik, A., Sezgin, E., Lesnyak, V., Gaponik, N., Schwille, P., Eychmüller, A., Penetration of Amphiphilic Quantum Dots through Model and Cellular Plasma Membranes (2012) ACS Nano, 6, pp. 2150-2156
  • Salvati, A., Pitek, A.S., Monopoli, M.P., Prapainop, K., Bombelli, F.B., Hristov, D.R., Kelly, P.M., Dawson, K.A., Transferrin-Functionalized Nanoparticles Lose Their Targeting Capabilities When a Biomolecule Corona Adsorbs on the Surface (2013) Nat. Nanotechnol., 8, pp. 137-146
  • Stone, V., Donaldson, K., Nanotoxicology: Signs of Stress (2006) Nat. Nanotechnol., 1, pp. 23-24
  • Dawson, K.A., Salvati, A., Lynch, I., Nanotoxicology: Nanoparticles Reconstruct Lipids (2009) Nat. Nanotechnol., 4, pp. 84-85
  • Kim, S.T., Saha, K., Kim, C., Rotello, V.M., The Role of Surface Functionality in Determining Nanoparticle Cytotoxicity (2013) Acc. Chem. Res., 46, pp. 681-691
  • Brooks, N.A., Pouniotis, D.S., Tang, C.K., Apostolopoulos, V., Pietersz, G.A., Cell-Penetrating Peptides: Application in Vaccine Delivery (2010) BBA-Rev. Cancer, 1805, pp. 25-34
  • Johnson, R.M., Harrison, S.D., MacLean, D., Therapeutic Applications of Cell-Penetrating Peptides (2011) Methods Mol. Biol., 683, pp. 535-551
  • Koren, E., Torchilin, V.P., Cell-Penetrating Peptides: Breaking through to the Other Side (2012) Trends Mol. Med., 18, pp. 385-393
  • Gao, H., Yang, Z., Zhang, S., Cao, S., Shen, S., Pang, Z., Jiang, X., Ligand Modified Nanoparticles Increases Cell Uptake, Alters Endocytosis and Elevates Glioma Distribution and Internalization (2013) Sci. Rep., 3, pp. 25341-25348
  • Saha, K., Kim, S.T., Yan, B., Miranda, O.R., Alfonso, F.S., Shlosman, D., Rotello, V.M., Surface Functionality of Nanoparticles Determines Cellular Uptake Mechanisms in Mammalian Cells (2013) Small, 9, pp. 300-305
  • Punnonen, E.-L., Ryhanen, K., Marjomaki, V.S., At reduced temperature, endocytic membrane traffic is blocked in multivesicular carrier endosomes in rat cardiac myocytes (1998) European Journal of Cell Biology, 75 (4), pp. 344-352
  • Kirchhausen, T., MacIa, E., Pelish, H.E., Use of Dynasore, the Small Molecule Inhibitor of Dynamin, in the Regulation of Endocytosis (2008) Methods Enzymol., 438, pp. 77-93
  • Monopoli, M.P., Aberg, C., Salvati, A., Dawson, K.A., Biomolecular Coronas Provide the Biological Identity of Nanosized Materials (2012) Nat. Nanotechnol., 7, pp. 779-786
  • Nelson, A., Benton, A., Phospholipid Monolayers at the Mercury/Water Interface (1986) J. Electroanal. Chem. Interfacial Electrochem., 202, pp. 253-270
  • Gordillo, G.J., Schiffrin, D.J., The Electrochemistry of Ubiquinone-10 in a Phospholipid Model Membrane (2000) Faraday Discuss., 116, pp. 89-107
  • Moncelli, M.R., Becucci, L., Nelson, A., Guidelli, R., Electrochemical modeling of electron and proton transfer to ubiquinone-10 in a self-assembled phospholipid monolayer (1996) Biophysical Journal, 70 (6), pp. 2716-2726
  • Zhang, S., Nelson, A., Beales, P.A., Freezing or Wrapping: The Role of Particle Size in the Mechanism of Nanoparticle-Biomembrane Interaction (2012) Langmuir, 28, pp. 12831-12837
  • Vakurov, A., Brydson, R., Nelson, A., Electrochemical Modeling of the Silica Nanoparticle-Biomembrane Interaction (2011) Langmuir, 28, pp. 1246-1255
  • Carney, R.P., Astier, Y., Carney, T.M., Voïtchovsky, K., Jacob Silva, P.H., Stellacci, F., Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers (2012) ACS Nano, 7, pp. 932-942
  • Almaleck, H., Gordillo, G.J., Disalvo, A., Water Defects Induced by Expansion and Electrical Fields in DMPC and DMPE Monolayers: Contribution of Hydration and Confined Water (2013) Colloids Surf., B, 102, pp. 871-878
  • Brust, M., Gordillo, G.J., Electrocatalytic Hydrogen Redox Chemistry on Gold Nanoparticles (2012) J. Am. Chem. Soc., 134, pp. 3318-3321
  • Dubavik, A., Lesnyak, V., Gaponik, N., Eychmüller, A., One-Phase Synthesis of Gold Nanoparticles with Varied Solubility (2011) Langmuir, 27, pp. 10224-10227
  • Tatur, S., MacCarini, M., Barker, R., Nelson, A., Fragneto, G., Effect of Functionalized Gold Nanoparticles on Floating Lipid Bilayers (2013) Langmuir, 29, pp. 6606-6614
  • Nelson, A., Electrochemistry of Mercury Supported Phospholipid Monolayers and Bilayers (2010) Curr. Opin. Colloid Interface Sci., 15, pp. 455-466
  • Turkevich, J., Stevenson, P.C., Hillier, J., A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold (1951) Discuss. Faraday Soc., 11, pp. 55-75
  • Frens, G., Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions (1973) Nat. Phys. Sci., 241, pp. 20-22
  • Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R., Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System (1994) J. Chem. Soc., Chem. Commun., pp. 801-802
  • Krpetic, Z., Davidson, A.M., Volk, M., Levy, R., Brust, M., Cooper, A.I., High Resolution Sizing of Monolayer Protected Gold Clusters by Differential Centrifugal Sedimentation (2013) ACS Nano, 7, p. 8881

Citas:

---------- APA ----------
Gordillo, G.J., Krpetić, Z. & Brust, M. (2014) . Interactions of gold nanoparticles with a phospholipid monolayer membrane on mercury. ACS Nano, 8(6), 6074-6080.
http://dx.doi.org/10.1021/nn501395e
---------- CHICAGO ----------
Gordillo, G.J., Krpetić, Z., Brust, M. "Interactions of gold nanoparticles with a phospholipid monolayer membrane on mercury" . ACS Nano 8, no. 6 (2014) : 6074-6080.
http://dx.doi.org/10.1021/nn501395e
---------- MLA ----------
Gordillo, G.J., Krpetić, Z., Brust, M. "Interactions of gold nanoparticles with a phospholipid monolayer membrane on mercury" . ACS Nano, vol. 8, no. 6, 2014, pp. 6074-6080.
http://dx.doi.org/10.1021/nn501395e
---------- VANCOUVER ----------
Gordillo, G.J., Krpetić, Z., Brust, M. Interactions of gold nanoparticles with a phospholipid monolayer membrane on mercury. ACS Nano. 2014;8(6):6074-6080.
http://dx.doi.org/10.1021/nn501395e