Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Figure Persented: Plasmonics and near-field optical nanoscopy both deal with expanding optics into the subwavelength regime. However, these two fields have so far followed parallel paths of development and only recently have researchers started to explore combinations of their concepts with potential synergy. In this Perspective, we provide an up-to-date summary of the successful combinations reported and give insight into some new possibilities. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Plasmonics meets far-field optical nanoscopy
Autor:Balzarotti, F.; Stefani, F.D.
Filiación:Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
Departamento de Física, Instituto de Física de Buenos Aires (IFIBA, CONICET), Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Far-field; Near-field; Parallel path; Plasmonics; Potential synergies; Sub-wavelength; Engineering; Nanotechnology; Plasmons; nanoparticle; atomic force microscopy; chemistry; image enhancement; methodology; nanotechnology; particle size; review; surface plasmon resonance; ultrastructure; Image Enhancement; Microscopy, Atomic Force; Nanoparticles; Nanotechnology; Particle Size; Surface Plasmon Resonance
Año:2012
Volumen:6
Número:6
Página de inicio:4580
Página de fin:4584
DOI: http://dx.doi.org/10.1021/nn302306m
Título revista:ACS Nano
Título revista abreviado:ACS Nano
ISSN:19360851
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19360851_v6_n6_p4580_Balzarotti

Referencias:

  • Hell, S.W., Microscopy and Its Focal Switch (2009) Nat. Methods, 6, pp. 24-32
  • Hell, S.W., Wichmann, J., Breaking the Diffraction Resolution Limit (1994) Opt. Lett., 19, pp. 780-782
  • Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., Fluorescence Microscopy with Diffraction Resolution Barrier Broken by Stimulated Emission (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 8206-8210
  • Heintzmann, R., Jovin, T.M., Cremer, C., Saturated Patterned Excitation Microscopy-A Concept for Optical Resolution Improvement (2002) J. Opt. Soc. Am. A, 19, pp. 1599-1609
  • Gustafsson, M.G.L., Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 13081-13086
  • Bates, M., Huang, B., Zhuang, X., Super-Resolution Microscopy by Nanoscale Localization of Photo-Switchable Fluorescent Probes (2008) Curr. Opin. Chem. Biol., 12, pp. 505-514
  • Geissbuehler, S., Dellagiacoma, C., Lasser, T., Comparison between SOFI and STORM (2011) Biomed. Opt. Express, 2, pp. 408-420
  • Dertinger, T., Colyer, R., Vogel, R., Enderlein, J., Weiss, S., Achieving Increased Resolution and More Pixels with Superresolution Optical Fluctuation Imaging (SOFI) (2010) Opt. Express, 18, pp. 18875-18885
  • Coronado, E.A., Encina, E.R., Stefani, F.D., Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale (2011) Nanoscale, 3, pp. 4042-4059
  • Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L., Plasmonics for Extreme Light Concentration and Manipulation (2010) Nat. Mater., 9, pp. 193-204
  • Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R.-M., Gladden, C., Dai, L., Bartal, G., Zhang, X., Plasmon Lasers at Deep Subwavelength Scale (2009) Nature, 461, pp. 629-632
  • Taminiau, T.H., Moerland, R.J., Segerink, F.B., Kuipers, L., Van Hulst, N.F., Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence (2007) Nano Lett., 7, pp. 28-33
  • Gramotnev, D.K., Bozhevolnyi, S.I., Plasmonics beyond the Diffraction Limit (2010) Nat. Photonics, 4, pp. 83-91
  • Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., Optical Antennas Direct Single-Molecule Emission (2008) Nat. Photonics, 2, pp. 234-237
  • Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., Van Hulst, N.F., Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna (2010) Science, 329, pp. 930-933
  • Wu, D., Liu, Z., Sun, C., Zhang, X., Super-Resolution Imaging by Random Adsorbed Molecule Probes (2008) Nano Lett., 8, pp. 1159-1162
  • Zhai, X., Sun, Y., Wu, D., Resolution Enhancement of Random Adsorbed Single-Molecule Localization Based on Surface Plasmon Resonance Illumination (2011) Opt. Lett., 36, pp. 4242-4244
  • Wei, F., Liu, Z., Plasmonic Structured Illumination Microscopy (2010) Nano Lett., 10, pp. 2531-2536
  • Zhang, H., Zhao, M., Peng, L., Nonlinear Structured Illumination Microscopy by Surface Plasmon Enhanced Stimulated Emission Depletion (2011) Opt. Express, 19, pp. 24783-24794
  • Sivan, Y., Sonnefraud, Y., Kéna-Cohen, S., Pendry, J.B., Maier, S.A., Nanoparticle-Assisted Stimulated-Emission-Depletion Nanoscopy (2012) ACS Nano, 6. , DOI: 10.1021/nn301082g
  • Cang, H., Labno, A., Lu, C., Yin, X., Liu, M., Gladden, C., Liu, Y., Zhang, X., Probing the Electromagnetic Field of a 15-Nanometre Hotspot by Single Molecule Imaging (2011) Nature, 469, pp. 385-388
  • Stranahan, S.M., Willets, K., Super-Resolution Optical Imaging of Single-Molecule SERS Hot Spots (2010) Nano Lett., 10, pp. 3777-3784
  • Bharadwaj, P., Deutsch, B., Novotny, L., Optical Antennas (2009) Adv. Opt. Photonics, 1, pp. 438-483
  • Taminiau, T.H., Stefani, F.D., Van Hulst, N.F., Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes (2011) Nano Lett., 11, pp. 1020-1024
  • Tcherniak, A., Dominguez-Medina, S., Chang, W.S., Swanglap, P., Slaughter, L.S., Landes, C.F., Link, S., One-Photon Plasmon Luminescence and Its Application to Correlation Spectroscopy as a Probe for Rotational and Translational Dynamics of Gold Nanorods (2011) J. Phys. Chem. C, 115, pp. 15938-15949
  • Mohamed, M.B., Volkov, V., Link, S., El-Sayed, M.A., The "lightning" Gold Nanorods: Fluorescence Enhancement of over a Million Compared to the Gold Metal (2000) Chem. Phys. Lett., 317, pp. 517-523
  • Wang, H., Huff, T.B., Zweifel, D.A., He, W., Low, P.S., Wei, A., Cheng, J.-X., In Vitro and in Vivo Two-Photon Luminescence Imaging of Single Gold Nanorods (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 15752-15756
  • Durr, N.J., Larson, T., Smith, D.K., Korgel, B.A., Sokolov, K., Ben-Yakar, A., Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods (2007) Nano Lett., 7, pp. 941-945

Citas:

---------- APA ----------
Balzarotti, F. & Stefani, F.D. (2012) . Plasmonics meets far-field optical nanoscopy. ACS Nano, 6(6), 4580-4584.
http://dx.doi.org/10.1021/nn302306m
---------- CHICAGO ----------
Balzarotti, F., Stefani, F.D. "Plasmonics meets far-field optical nanoscopy" . ACS Nano 6, no. 6 (2012) : 4580-4584.
http://dx.doi.org/10.1021/nn302306m
---------- MLA ----------
Balzarotti, F., Stefani, F.D. "Plasmonics meets far-field optical nanoscopy" . ACS Nano, vol. 6, no. 6, 2012, pp. 4580-4584.
http://dx.doi.org/10.1021/nn302306m
---------- VANCOUVER ----------
Balzarotti, F., Stefani, F.D. Plasmonics meets far-field optical nanoscopy. ACS Nano. 2012;6(6):4580-4584.
http://dx.doi.org/10.1021/nn302306m